File size: 2,305 Bytes
c7ce7f7
e97d4b7
 
 
 
 
 
 
7a61423
 
6440264
397121d
6440264
 
 
e97d4b7
3a88eeb
e60395e
 
 
 
e97d4b7
 
 
 
 
 
 
 
 
 
 
c7ed215
e97d4b7
 
 
 
 
 
9a68d98
e97d4b7
791e445
 
e97d4b7
 
 
 
 
 
9a68d98
e97d4b7
 
 
 
 
 
 
 
 
 
c7ed215
e60395e
 
 
e97d4b7
 
e60395e
e97d4b7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

import gradio as gr
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
import soundfile as sf
from diffusers import StableAudioPipeline
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ''
from huggingface_hub import login
from torch.nn.utils.parametrizations import weight_norm


login(token=os.environ["HF_TOKEN"])

device = torch.device("cpu")
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cpu")
pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0")
pipe = pipe.to("cpu")

#img_url = 'https://www.caracteristicass.de/wp-content/uploads/2023/02/imagenes-artisticas.jpg'


class Aspecto():
    pass

screen = Aspecto()
with gr.Blocks(theme=gr.themes.Ocean(primary_hue="pink", neutral_hue="indigo", font=[gr.themes.GoogleFont("Montserrat"), "Playwrite England SemiJoine", "Quicksand"])) as demo:
    textbox = gr.Textbox(label="Url")
    with gr.Row():
        button = gr.Button("Describir", variant="primary")
        clear = gr.Button("Borrar")
    output = gr.Textbox(label="Resumen")
    output2 = gr.Audio(label="Audio")

    def describir(url):
      raw_image = Image.open(requests.get(url, stream=True).raw).convert('RGB')
      inputs = processor(raw_image, return_tensors="pt").to("cpu")
      out = model.generate(**inputs)
      leer(processor.decode(out[0], skip_special_tokens=True))
      return processor.decode(out[0], skip_special_tokens=True)

    def leer(texto):
        prompt = texto
        negative_prompt = "Low quality."

        # set the seed for generator
        generator = torch.Generator("cpu").manual_seed(0)

        # run the generation
        audio = pipe(
            prompt,
            negative_prompt=negative_prompt,
            num_inference_steps=200,
            audio_end_in_s=10.0,
            num_waveforms_per_prompt=3,
            generator=generator,
        ).audios
        
        salida = audio[0].T.float().cpu().numpy()
        sf.write("demo.wav", salida, pipe.vae.sampling_rate)
        return sf.read("demo.wav")


    button.click(describir, [textbox], output, leer, [output], output2)

demo.launch(debug=True)