import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Cargar el modelo y el tokenizer model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Construir el prompt con el formato correcto prompt = f"<|system|>\n{system_message}\n" for val in history: if val[0]: prompt += f"<|user|>\n{val[0]}\n" if val[1]: prompt += f"<|assistant|>\n{val[1]}\n" prompt += f"<|user|>\n{message}\n<|assistant|>\n" # Tokenizar el prompt inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generar la respuesta outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id ) # Decodificar la respuesta response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extraer solo la parte de la respuesta del asistente response = response.split("<|assistant|>\n")[-1].strip() yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/gradio/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly Chatbot. Always reply in the language in which the user is writing to you.", label="System message" ), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()