Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# Cargar el modelo y el tokenizer | |
model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Construir el prompt con el formato correcto | |
prompt = f"<|system|>\n{system_message}</s>\n" | |
for val in history: | |
if val[0]: | |
prompt += f"<|user|>\n{val[0]}</s>\n" | |
if val[1]: | |
prompt += f"<|assistant|>\n{val[1]}</s>\n" | |
prompt += f"<|user|>\n{message}</s>\n<|assistant|>\n" | |
# Tokenizar el prompt | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generar la respuesta | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decodificar la respuesta | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extraer solo la parte de la respuesta del asistente | |
response = response.split("<|assistant|>\n")[-1].strip() | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/gradio/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly Chatbot. Always reply in the language in which the user is writing to you.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |