Spaces:
Runtime error
Runtime error
# coding: utf-8 | |
__author__ = 'https://github.com/ZFTurbo/' | |
if __name__ == '__main__': | |
import os | |
gpu_use = "0" | |
print('GPU use: {}'.format(gpu_use)) | |
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use) | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import os | |
import argparse | |
import soundfile as sf | |
from demucs.states import load_model | |
from demucs import pretrained | |
from demucs.apply import apply_model | |
import onnxruntime as ort | |
from time import time | |
import librosa | |
import hashlib | |
__VERSION__ = '1.0.1' | |
class Conv_TDF_net_trim_model(nn.Module): | |
def __init__(self, device, target_name, L, n_fft, hop=1024): | |
super(Conv_TDF_net_trim_model, self).__init__() | |
self.dim_c = 4 | |
self.dim_f, self.dim_t = 3072, 256 | |
self.n_fft = n_fft | |
self.hop = hop | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device) | |
self.target_name = target_name | |
out_c = self.dim_c * 4 if target_name == '*' else self.dim_c | |
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device) | |
self.n = L // 2 | |
def stft(self, x): | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, self.dim_c, self.n_bins, self.dim_t]) | |
return x[:, :, :self.dim_f] | |
def istft(self, x, freq_pad=None): | |
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad | |
x = torch.cat([x, freq_pad], -2) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t]) | |
x = x.permute([0, 2, 3, 1]) | |
x = x.contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) | |
return x.reshape([-1, 2, self.chunk_size]) | |
def forward(self, x): | |
x = self.first_conv(x) | |
x = x.transpose(-1, -2) | |
ds_outputs = [] | |
for i in range(self.n): | |
x = self.ds_dense[i](x) | |
ds_outputs.append(x) | |
x = self.ds[i](x) | |
x = self.mid_dense(x) | |
for i in range(self.n): | |
x = self.us[i](x) | |
x *= ds_outputs[-i - 1] | |
x = self.us_dense[i](x) | |
x = x.transpose(-1, -2) | |
x = self.final_conv(x) | |
return x | |
def get_models(name, device, load=True, vocals_model_type=0): | |
if vocals_model_type == 2: | |
model_vocals = Conv_TDF_net_trim_model( | |
device=device, | |
target_name='vocals', | |
L=11, | |
n_fft=7680 | |
) | |
elif vocals_model_type == 3: | |
model_vocals = Conv_TDF_net_trim_model( | |
device=device, | |
target_name='vocals', | |
L=11, | |
n_fft=6144 | |
) | |
return [model_vocals] | |
def demix_base(mix, device, models, infer_session): | |
start_time = time() | |
sources = [] | |
n_sample = mix.shape[1] | |
for model in models: | |
trim = model.n_fft // 2 | |
gen_size = model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
mix_p = np.concatenate( | |
( | |
np.zeros((2, trim)), | |
mix, | |
np.zeros((2, pad)), | |
np.zeros((2, trim)) | |
), 1 | |
) | |
mix_waves = [] | |
i = 0 | |
while i < n_sample + pad: | |
waves = np.array(mix_p[:, i:i + model.chunk_size]) | |
mix_waves.append(waves) | |
i += gen_size | |
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(device) | |
with torch.no_grad(): | |
_ort = infer_session | |
stft_res = model.stft(mix_waves) | |
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0] | |
ten = torch.tensor(res) | |
tar_waves = model.istft(ten.to(device)) | |
tar_waves = tar_waves.cpu() | |
tar_signal = tar_waves[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).numpy()[:, :-pad] | |
sources.append(tar_signal) | |
# print('Time demix base: {:.2f} sec'.format(time() - start_time)) | |
return np.array(sources) | |
def demix_full(mix, device, chunk_size, models, infer_session, overlap=0.75): | |
start_time = time() | |
step = int(chunk_size * (1 - overlap)) | |
# print('Initial shape: {} Chunk size: {} Step: {} Device: {}'.format(mix.shape, chunk_size, step, device)) | |
result = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32) | |
divider = np.zeros((1, 2, mix.shape[-1]), dtype=np.float32) | |
total = 0 | |
for i in range(0, mix.shape[-1], step): | |
total += 1 | |
start = i | |
end = min(i + chunk_size, mix.shape[-1]) | |
# print('Chunk: {} Start: {} End: {}'.format(total, start, end)) | |
mix_part = mix[:, start:end] | |
sources = demix_base(mix_part, device, models, infer_session) | |
# print(sources.shape) | |
result[..., start:end] += sources | |
divider[..., start:end] += 1 | |
sources = result / divider | |
# print('Final shape: {} Overall time: {:.2f}'.format(sources.shape, time() - start_time)) | |
return sources | |
class EnsembleDemucsMDXMusicSeparationModel: | |
""" | |
Doesn't do any separation just passes the input back as output | |
""" | |
def __init__(self, options): | |
""" | |
options - user options | |
""" | |
# print(options) | |
if torch.cuda.is_available(): | |
device = 'cuda:0' | |
else: | |
device = 'cpu' | |
if 'cpu' in options: | |
if options['cpu']: | |
device = 'cpu' | |
print('Use device: {}'.format(device)) | |
self.single_onnx = False | |
if 'single_onnx' in options: | |
if options['single_onnx']: | |
self.single_onnx = True | |
print('Use single vocal ONNX') | |
self.kim_model_1 = False | |
if 'use_kim_model_1' in options: | |
if options['use_kim_model_1']: | |
self.kim_model_1 = True | |
if self.kim_model_1: | |
print('Use Kim model 1') | |
else: | |
print('Use Kim model 2') | |
self.overlap_large = float(options['overlap_large']) | |
self.overlap_small = float(options['overlap_small']) | |
if self.overlap_large > 0.99: | |
self.overlap_large = 0.99 | |
if self.overlap_large < 0.0: | |
self.overlap_large = 0.0 | |
if self.overlap_small > 0.99: | |
self.overlap_small = 0.99 | |
if self.overlap_small < 0.0: | |
self.overlap_small = 0.0 | |
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/' | |
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th' | |
model_path = model_folder + '04573f0d-f3cf25b2.th' | |
if not os.path.isfile(model_path): | |
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th') | |
model_vocals = load_model(model_path) | |
model_vocals.to(device) | |
self.model_vocals_only = model_vocals | |
self.models = [] | |
self.weights_vocals = np.array([10, 1, 8, 9]) | |
self.weights_bass = np.array([19, 4, 5, 8]) | |
self.weights_drums = np.array([18, 2, 4, 9]) | |
self.weights_other = np.array([14, 2, 5, 10]) | |
model1 = pretrained.get_model('htdemucs_ft') | |
model1.to(device) | |
self.models.append(model1) | |
model2 = pretrained.get_model('htdemucs') | |
model2.to(device) | |
self.models.append(model2) | |
model3 = pretrained.get_model('htdemucs_6s') | |
model3.to(device) | |
self.models.append(model3) | |
model4 = pretrained.get_model('hdemucs_mmi') | |
model4.to(device) | |
self.models.append(model4) | |
if 0: | |
for model in self.models: | |
print(model.sources) | |
''' | |
['drums', 'bass', 'other', 'vocals'] | |
['drums', 'bass', 'other', 'vocals'] | |
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano'] | |
['drums', 'bass', 'other', 'vocals'] | |
''' | |
if device == 'cpu': | |
chunk_size = 200000000 | |
providers = ["CPUExecutionProvider"] | |
else: | |
chunk_size = 1000000 | |
providers = ["CUDAExecutionProvider"] | |
if 'chunk_size' in options: | |
chunk_size = int(options['chunk_size']) | |
# MDX-B model 1 initialization | |
self.chunk_size = chunk_size | |
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2) | |
if self.kim_model_1: | |
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx' | |
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx' | |
else: | |
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx' | |
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx' | |
if not os.path.isfile(model_path_onnx1): | |
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1) | |
print('Model path: {}'.format(model_path_onnx1)) | |
print('Device: {} Chunk size: {}'.format(device, chunk_size)) | |
self.infer_session1 = ort.InferenceSession( | |
model_path_onnx1, | |
providers=providers, | |
provider_options=[{"device_id": 0}], | |
) | |
if self.single_onnx is False: | |
# MDX-B model 2 initialization | |
self.chunk_size = chunk_size | |
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2) | |
root_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |
model_path_onnx2 = model_folder + 'Kim_Inst.onnx' | |
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx' | |
if not os.path.isfile(model_path_onnx2): | |
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2) | |
print('Model path: {}'.format(model_path_onnx2)) | |
print('Device: {} Chunk size: {}'.format(device, chunk_size)) | |
self.infer_session2 = ort.InferenceSession( | |
model_path_onnx2, | |
providers=providers, | |
provider_options=[{"device_id": 0}], | |
) | |
self.device = device | |
pass | |
def instruments(self): | |
""" DO NOT CHANGE """ | |
return ['bass', 'drums', 'other', 'vocals'] | |
def raise_aicrowd_error(self, msg): | |
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """ | |
raise NameError(msg) | |
def separate_music_file( | |
self, | |
mixed_sound_array, | |
sample_rate, | |
update_percent_func=None, | |
current_file_number=0, | |
total_files=0, | |
only_vocals=False, | |
): | |
""" | |
Implements the sound separation for a single sound file | |
Inputs: Outputs from soundfile.read('mixture.wav') | |
mixed_sound_array | |
sample_rate | |
Outputs: | |
separated_music_arrays: Dictionary numpy array of each separated instrument | |
output_sample_rates: Dictionary of sample rates separated sequence | |
""" | |
# print('Update percent func: {}'.format(update_percent_func)) | |
separated_music_arrays = {} | |
output_sample_rates = {} | |
audio = np.expand_dims(mixed_sound_array.T, axis=0) | |
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) | |
overlap_large = self.overlap_large | |
overlap_small = self.overlap_small | |
# Get Demics vocal only | |
model = self.model_vocals_only | |
shifts = 1 | |
overlap = overlap_large | |
vocals_demucs = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.10) / total_files | |
update_percent_func(int(val)) | |
vocals_demucs += 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.20) / total_files | |
update_percent_func(int(val)) | |
overlap = overlap_large | |
sources1 = demix_full( | |
mixed_sound_array.T, | |
self.device, | |
self.chunk_size, | |
self.mdx_models1, | |
self.infer_session1, | |
overlap=overlap | |
)[0] | |
vocals_mdxb1 = sources1 | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.30) / total_files | |
update_percent_func(int(val)) | |
if self.single_onnx is False: | |
sources2 = -demix_full( | |
-mixed_sound_array.T, | |
self.device, | |
self.chunk_size, | |
self.mdx_models2, | |
self.infer_session2, | |
overlap=overlap | |
)[0] | |
# it's instrumental so need to invert | |
instrum_mdxb2 = sources2 | |
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2 | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.40) / total_files | |
update_percent_func(int(val)) | |
# Ensemble vocals for MDX and Demucs | |
if self.single_onnx is False: | |
weights = np.array([12, 8, 3]) | |
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum() | |
else: | |
weights = np.array([6, 1]) | |
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum() | |
# vocals | |
separated_music_arrays['vocals'] = vocals | |
output_sample_rates['vocals'] = sample_rate | |
if not only_vocals: | |
# Generate instrumental | |
instrum = mixed_sound_array - vocals | |
audio = np.expand_dims(instrum.T, axis=0) | |
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) | |
all_outs = [] | |
for i, model in enumerate(self.models): | |
if i == 0: | |
overlap = overlap_small | |
elif i > 0: | |
overlap = overlap_large | |
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ | |
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files | |
update_percent_func(int(val)) | |
if i == 2: | |
# ['drums', 'bass', 'other', 'vocals', 'guitar', 'piano'] | |
out[2] = out[2] + out[4] + out[5] | |
out = out[:4] | |
out[0] = self.weights_drums[i] * out[0] | |
out[1] = self.weights_bass[i] * out[1] | |
out[2] = self.weights_other[i] * out[2] | |
out[3] = self.weights_vocals[i] * out[3] | |
all_outs.append(out) | |
out = np.array(all_outs).sum(axis=0) | |
out[0] = out[0] / self.weights_drums.sum() | |
out[1] = out[1] / self.weights_bass.sum() | |
out[2] = out[2] / self.weights_other.sum() | |
out[3] = out[3] / self.weights_vocals.sum() | |
# other | |
res = mixed_sound_array - vocals - out[0].T - out[1].T | |
res = np.clip(res, -1, 1) | |
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0 | |
output_sample_rates['other'] = sample_rate | |
# drums | |
res = mixed_sound_array - vocals - out[1].T - out[2].T | |
res = np.clip(res, -1, 1) | |
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0 | |
output_sample_rates['drums'] = sample_rate | |
# bass | |
res = mixed_sound_array - vocals - out[0].T - out[2].T | |
res = np.clip(res, -1, 1) | |
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0 | |
output_sample_rates['bass'] = sample_rate | |
bass = separated_music_arrays['bass'] | |
drums = separated_music_arrays['drums'] | |
other = separated_music_arrays['other'] | |
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums | |
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other | |
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.95) / total_files | |
update_percent_func(int(val)) | |
return separated_music_arrays, output_sample_rates | |
class EnsembleDemucsMDXMusicSeparationModelLowGPU: | |
""" | |
Doesn't do any separation just passes the input back as output | |
""" | |
def __init__(self, options): | |
""" | |
options - user options | |
""" | |
# print(options) | |
if torch.cuda.is_available(): | |
device = 'cuda:0' | |
else: | |
device = 'cpu' | |
if 'cpu' in options: | |
if options['cpu']: | |
device = 'cpu' | |
print('Use device: {}'.format(device)) | |
self.single_onnx = False | |
if 'single_onnx' in options: | |
if options['single_onnx']: | |
self.single_onnx = True | |
print('Use single vocal ONNX') | |
self.kim_model_1 = False | |
if 'use_kim_model_1' in options: | |
if options['use_kim_model_1']: | |
self.kim_model_1 = True | |
if self.kim_model_1: | |
print('Use Kim model 1') | |
else: | |
print('Use Kim model 2') | |
self.overlap_large = float(options['overlap_large']) | |
self.overlap_small = float(options['overlap_small']) | |
if self.overlap_large > 0.99: | |
self.overlap_large = 0.99 | |
if self.overlap_large < 0.0: | |
self.overlap_large = 0.0 | |
if self.overlap_small > 0.99: | |
self.overlap_small = 0.99 | |
if self.overlap_small < 0.0: | |
self.overlap_small = 0.0 | |
self.weights_vocals = np.array([10, 1, 8, 9]) | |
self.weights_bass = np.array([19, 4, 5, 8]) | |
self.weights_drums = np.array([18, 2, 4, 9]) | |
self.weights_other = np.array([14, 2, 5, 10]) | |
if device == 'cpu': | |
chunk_size = 200000000 | |
self.providers = ["CPUExecutionProvider"] | |
else: | |
chunk_size = 1000000 | |
self.providers = ["CUDAExecutionProvider"] | |
if 'chunk_size' in options: | |
chunk_size = int(options['chunk_size']) | |
self.chunk_size = chunk_size | |
self.device = device | |
pass | |
def instruments(self): | |
""" DO NOT CHANGE """ | |
return ['bass', 'drums', 'other', 'vocals'] | |
def raise_aicrowd_error(self, msg): | |
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """ | |
raise NameError(msg) | |
def separate_music_file( | |
self, | |
mixed_sound_array, | |
sample_rate, | |
update_percent_func=None, | |
current_file_number=0, | |
total_files=0, | |
only_vocals=False | |
): | |
""" | |
Implements the sound separation for a single sound file | |
Inputs: Outputs from soundfile.read('mixture.wav') | |
mixed_sound_array | |
sample_rate | |
Outputs: | |
separated_music_arrays: Dictionary numpy array of each separated instrument | |
output_sample_rates: Dictionary of sample rates separated sequence | |
""" | |
# print('Update percent func: {}'.format(update_percent_func)) | |
separated_music_arrays = {} | |
output_sample_rates = {} | |
audio = np.expand_dims(mixed_sound_array.T, axis=0) | |
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) | |
overlap_large = self.overlap_large | |
overlap_small = self.overlap_small | |
# Get Demucs vocal only | |
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/' | |
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th' | |
model_path = model_folder + '04573f0d-f3cf25b2.th' | |
if not os.path.isfile(model_path): | |
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th') | |
model_vocals = load_model(model_path) | |
model_vocals.to(self.device) | |
shifts = 1 | |
overlap = overlap_large | |
vocals_demucs = 0.5 * apply_model(model_vocals, audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.10) / total_files | |
update_percent_func(int(val)) | |
vocals_demucs += 0.5 * -apply_model(model_vocals, -audio, shifts=shifts, overlap=overlap)[0][3].cpu().numpy() | |
model_vocals = model_vocals.cpu() | |
del model_vocals | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.20) / total_files | |
update_percent_func(int(val)) | |
# MDX-B model 1 initialization | |
mdx_models1 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2) | |
if self.kim_model_1: | |
model_path_onnx1 = model_folder + 'Kim_Vocal_1.onnx' | |
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_1.onnx' | |
else: | |
model_path_onnx1 = model_folder + 'Kim_Vocal_2.onnx' | |
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Vocal_2.onnx' | |
if not os.path.isfile(model_path_onnx1): | |
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1) | |
print('Model path: {}'.format(model_path_onnx1)) | |
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size)) | |
infer_session1 = ort.InferenceSession( | |
model_path_onnx1, | |
providers=self.providers, | |
provider_options=[{"device_id": 0}], | |
) | |
overlap = overlap_large | |
sources1 = demix_full( | |
mixed_sound_array.T, | |
self.device, | |
self.chunk_size, | |
mdx_models1, | |
infer_session1, | |
overlap=overlap | |
)[0] | |
vocals_mdxb1 = sources1 | |
del infer_session1 | |
del mdx_models1 | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.30) / total_files | |
update_percent_func(int(val)) | |
if self.single_onnx is False: | |
# MDX-B model 2 initialization | |
mdx_models2 = get_models('tdf_extra', load=False, device=self.device, vocals_model_type=2) | |
root_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |
model_path_onnx2 = model_folder + 'Kim_Inst.onnx' | |
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/Kim_Inst.onnx' | |
if not os.path.isfile(model_path_onnx2): | |
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2) | |
print('Model path: {}'.format(model_path_onnx2)) | |
print('Device: {} Chunk size: {}'.format(self.device, self.chunk_size)) | |
infer_session2 = ort.InferenceSession( | |
model_path_onnx2, | |
providers=self.providers, | |
provider_options=[{"device_id": 0}], | |
) | |
overlap = overlap_large | |
sources2 = -demix_full( | |
-mixed_sound_array.T, | |
self.device, | |
self.chunk_size, | |
mdx_models2, | |
infer_session2, | |
overlap=overlap | |
)[0] | |
# it's instrumental so need to invert | |
instrum_mdxb2 = sources2 | |
vocals_mdxb2 = mixed_sound_array.T - instrum_mdxb2 | |
del infer_session2 | |
del mdx_models2 | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.40) / total_files | |
update_percent_func(int(val)) | |
# Ensemble vocals for MDX and Demucs | |
if self.single_onnx is False: | |
weights = np.array([12, 8, 3]) | |
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_mdxb2.T + weights[2] * vocals_demucs.T) / weights.sum() | |
else: | |
weights = np.array([6, 1]) | |
vocals = (weights[0] * vocals_mdxb1.T + weights[1] * vocals_demucs.T) / weights.sum() | |
# Generate instrumental | |
instrum = mixed_sound_array - vocals | |
audio = np.expand_dims(instrum.T, axis=0) | |
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) | |
all_outs = [] | |
i = 0 | |
overlap = overlap_small | |
model = pretrained.get_model('htdemucs_ft') | |
model.to(self.device) | |
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ | |
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files | |
update_percent_func(int(val)) | |
out[0] = self.weights_drums[i] * out[0] | |
out[1] = self.weights_bass[i] * out[1] | |
out[2] = self.weights_other[i] * out[2] | |
out[3] = self.weights_vocals[i] * out[3] | |
all_outs.append(out) | |
model = model.cpu() | |
del model | |
i = 1 | |
overlap = overlap_large | |
model = pretrained.get_model('htdemucs') | |
model.to(self.device) | |
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ | |
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files | |
update_percent_func(int(val)) | |
out[0] = self.weights_drums[i] * out[0] | |
out[1] = self.weights_bass[i] * out[1] | |
out[2] = self.weights_other[i] * out[2] | |
out[3] = self.weights_vocals[i] * out[3] | |
all_outs.append(out) | |
model = model.cpu() | |
del model | |
i = 2 | |
overlap = overlap_large | |
model = pretrained.get_model('htdemucs_6s') | |
model.to(self.device) | |
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ | |
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files | |
update_percent_func(int(val)) | |
# More stems need to add | |
out[2] = out[2] + out[4] + out[5] | |
out = out[:4] | |
out[0] = self.weights_drums[i] * out[0] | |
out[1] = self.weights_bass[i] * out[1] | |
out[2] = self.weights_other[i] * out[2] | |
out[3] = self.weights_vocals[i] * out[3] | |
all_outs.append(out) | |
model = model.cpu() | |
del model | |
i = 3 | |
model = pretrained.get_model('hdemucs_mmi') | |
model.to(self.device) | |
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ | |
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.50 + i * 0.10) / total_files | |
update_percent_func(int(val)) | |
out[0] = self.weights_drums[i] * out[0] | |
out[1] = self.weights_bass[i] * out[1] | |
out[2] = self.weights_other[i] * out[2] | |
out[3] = self.weights_vocals[i] * out[3] | |
all_outs.append(out) | |
model = model.cpu() | |
del model | |
out = np.array(all_outs).sum(axis=0) | |
out[0] = out[0] / self.weights_drums.sum() | |
out[1] = out[1] / self.weights_bass.sum() | |
out[2] = out[2] / self.weights_other.sum() | |
out[3] = out[3] / self.weights_vocals.sum() | |
# vocals | |
separated_music_arrays['vocals'] = vocals | |
output_sample_rates['vocals'] = sample_rate | |
# other | |
res = mixed_sound_array - vocals - out[0].T - out[1].T | |
res = np.clip(res, -1, 1) | |
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0 | |
output_sample_rates['other'] = sample_rate | |
# drums | |
res = mixed_sound_array - vocals - out[1].T - out[2].T | |
res = np.clip(res, -1, 1) | |
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0 | |
output_sample_rates['drums'] = sample_rate | |
# bass | |
res = mixed_sound_array - vocals - out[0].T - out[2].T | |
res = np.clip(res, -1, 1) | |
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0 | |
output_sample_rates['bass'] = sample_rate | |
bass = separated_music_arrays['bass'] | |
drums = separated_music_arrays['drums'] | |
other = separated_music_arrays['other'] | |
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums | |
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other | |
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other | |
if update_percent_func is not None: | |
val = 100 * (current_file_number + 0.95) / total_files | |
update_percent_func(int(val)) | |
return separated_music_arrays, output_sample_rates | |
def predict_with_model(options): | |
for input_audio in options['input_audio']: | |
if not os.path.isfile(input_audio): | |
print('Error. No such file: {}. Please check path!'.format(input_audio)) | |
return | |
output_folder = options['output_folder'] | |
if not os.path.isdir(output_folder): | |
os.mkdir(output_folder) | |
only_vocals = False | |
if 'only_vocals' in options: | |
if options['only_vocals'] is True: | |
print('Generate only vocals and instrumental') | |
only_vocals = True | |
model = None | |
if 'large_gpu' in options: | |
if options['large_gpu'] is True: | |
print('Use fast large GPU memory version of code') | |
model = EnsembleDemucsMDXMusicSeparationModel(options) | |
if model is None: | |
print('Use low GPU memory version of code') | |
model = EnsembleDemucsMDXMusicSeparationModelLowGPU(options) | |
update_percent_func = None | |
if 'update_percent_func' in options: | |
update_percent_func = options['update_percent_func'] | |
for i, input_audio in enumerate(options['input_audio']): | |
print('Go for: {}'.format(input_audio)) | |
audio, sr = librosa.load(input_audio, mono=False, sr=44100) | |
if len(audio.shape) == 1: | |
audio = np.stack([audio, audio], axis=0) | |
print("Input audio: {} Sample rate: {}".format(audio.shape, sr)) | |
result, sample_rates = model.separate_music_file( | |
audio.T, | |
sr, | |
update_percent_func, | |
i, | |
len(options['input_audio']), | |
only_vocals, | |
) | |
all_instrum = model.instruments | |
if only_vocals: | |
all_instrum = ['vocals'] | |
for instrum in all_instrum: | |
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format(instrum) | |
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype='FLOAT') | |
print('File created: {}'.format(output_folder + '/' + output_name)) | |
# instrumental part 1 | |
inst = audio.T - result['vocals'] | |
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum') | |
sf.write(output_folder + '/' + output_name, inst, sr, subtype='FLOAT') | |
print('File created: {}'.format(output_folder + '/' + output_name)) | |
if not only_vocals: | |
# instrumental part 2 | |
inst2 = result['bass'] + result['drums'] + result['other'] | |
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.wav'.format('instrum2') | |
sf.write(output_folder + '/' + output_name, inst2, sr, subtype='FLOAT') | |
print('File created: {}'.format(output_folder + '/' + output_name)) | |
if update_percent_func is not None: | |
val = 100 | |
update_percent_func(int(val)) | |
def md5(fname): | |
hash_md5 = hashlib.md5() | |
with open(fname, "rb") as f: | |
for chunk in iter(lambda: f.read(4096), b""): | |
hash_md5.update(chunk) | |
return hash_md5.hexdigest() | |
if __name__ == '__main__': | |
start_time = time() | |
print("Version: {}".format(__VERSION__)) | |
m = argparse.ArgumentParser() | |
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True) | |
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True) | |
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.") | |
m.add_argument("--overlap_large", "-ol", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.6) | |
m.add_argument("--overlap_small", "-os", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.5) | |
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.") | |
m.add_argument("--chunk_size", "-cz", type=int, help="Chunk size for ONNX models. Set lower to reduce GPU memory consumption. Default: 1000000", required=False, default=1000000) | |
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.") | |
m.add_argument("--use_kim_model_1", action='store_true', help="Use first version of Kim model (as it was on contest).") | |
m.add_argument("--only_vocals", action='store_true', help="Only create vocals and instrumental. Skip bass, drums, other") | |
options = m.parse_args().__dict__ | |
print("Options: ".format(options)) | |
for el in options: | |
print('{}: {}'.format(el, options[el])) | |
predict_with_model(options) | |
print('Time: {:.0f} sec'.format(time() - start_time)) | |
print('Presented by https://mvsep.com') | |
""" | |
Example: | |
python inference.py | |
--input_audio mixture.wav mixture1.wav | |
--output_folder ./results/ | |
--cpu | |
--overlap_large 0.25 | |
--overlap_small 0.25 | |
--chunk_size 500000 | |
""" | |