Create vtoonify/model/stylegan/op_gpu/fused_act.py
Browse files
vtoonify/model/stylegan/op_gpu/fused_act.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.autograd import Function
|
7 |
+
from torch.utils.cpp_extension import load
|
8 |
+
|
9 |
+
|
10 |
+
module_path = os.path.dirname(__file__)
|
11 |
+
fused = load(
|
12 |
+
"fused",
|
13 |
+
sources=[
|
14 |
+
os.path.join(module_path, "fused_bias_act.cpp"),
|
15 |
+
os.path.join(module_path, "fused_bias_act_kernel.cu"),
|
16 |
+
],
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, grad_output, out, bias, negative_slope, scale):
|
23 |
+
ctx.save_for_backward(out)
|
24 |
+
ctx.negative_slope = negative_slope
|
25 |
+
ctx.scale = scale
|
26 |
+
|
27 |
+
empty = grad_output.new_empty(0)
|
28 |
+
|
29 |
+
grad_input = fused.fused_bias_act(
|
30 |
+
grad_output.contiguous(), empty, out, 3, 1, negative_slope, scale
|
31 |
+
)
|
32 |
+
|
33 |
+
dim = [0]
|
34 |
+
|
35 |
+
if grad_input.ndim > 2:
|
36 |
+
dim += list(range(2, grad_input.ndim))
|
37 |
+
|
38 |
+
if bias:
|
39 |
+
grad_bias = grad_input.sum(dim).detach()
|
40 |
+
|
41 |
+
else:
|
42 |
+
grad_bias = empty
|
43 |
+
|
44 |
+
return grad_input, grad_bias
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
48 |
+
out, = ctx.saved_tensors
|
49 |
+
gradgrad_out = fused.fused_bias_act(
|
50 |
+
gradgrad_input.contiguous(), gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
51 |
+
)
|
52 |
+
|
53 |
+
return gradgrad_out, None, None, None, None
|
54 |
+
|
55 |
+
|
56 |
+
class FusedLeakyReLUFunction(Function):
|
57 |
+
@staticmethod
|
58 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
59 |
+
empty = input.new_empty(0)
|
60 |
+
|
61 |
+
ctx.bias = bias is not None
|
62 |
+
|
63 |
+
if bias is None:
|
64 |
+
bias = empty
|
65 |
+
|
66 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
67 |
+
ctx.save_for_backward(out)
|
68 |
+
ctx.negative_slope = negative_slope
|
69 |
+
ctx.scale = scale
|
70 |
+
|
71 |
+
return out
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def backward(ctx, grad_output):
|
75 |
+
out, = ctx.saved_tensors
|
76 |
+
|
77 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
78 |
+
grad_output, out, ctx.bias, ctx.negative_slope, ctx.scale
|
79 |
+
)
|
80 |
+
|
81 |
+
if not ctx.bias:
|
82 |
+
grad_bias = None
|
83 |
+
|
84 |
+
return grad_input, grad_bias, None, None
|
85 |
+
|
86 |
+
|
87 |
+
class FusedLeakyReLU(nn.Module):
|
88 |
+
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5):
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
if bias:
|
92 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
93 |
+
|
94 |
+
else:
|
95 |
+
self.bias = None
|
96 |
+
|
97 |
+
self.negative_slope = negative_slope
|
98 |
+
self.scale = scale
|
99 |
+
|
100 |
+
def forward(self, input):
|
101 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
102 |
+
|
103 |
+
|
104 |
+
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
105 |
+
if input.device.type == "cpu":
|
106 |
+
if bias is not None:
|
107 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
108 |
+
return (
|
109 |
+
F.leaky_relu(
|
110 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
111 |
+
)
|
112 |
+
* scale
|
113 |
+
)
|
114 |
+
|
115 |
+
else:
|
116 |
+
return F.leaky_relu(input, negative_slope=0.2) * scale
|
117 |
+
|
118 |
+
else:
|
119 |
+
return FusedLeakyReLUFunction.apply(input.contiguous(), bias, negative_slope, scale)
|