Create vtoonify/model/stylegan/lpips/networks_basic.py
Browse files
vtoonify/model/stylegan/lpips/networks_basic.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.init as init
|
7 |
+
from torch.autograd import Variable
|
8 |
+
import numpy as np
|
9 |
+
from pdb import set_trace as st
|
10 |
+
from skimage import color
|
11 |
+
from IPython import embed
|
12 |
+
from model.stylegan.lpips import pretrained_networks as pn
|
13 |
+
|
14 |
+
import model.stylegan.lpips as util
|
15 |
+
|
16 |
+
def spatial_average(in_tens, keepdim=True):
|
17 |
+
return in_tens.mean([2,3],keepdim=keepdim)
|
18 |
+
|
19 |
+
def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W
|
20 |
+
in_H = in_tens.shape[2]
|
21 |
+
scale_factor = 1.*out_H/in_H
|
22 |
+
|
23 |
+
return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens)
|
24 |
+
|
25 |
+
# Learned perceptual metric
|
26 |
+
class PNetLin(nn.Module):
|
27 |
+
def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, version='0.1', lpips=True):
|
28 |
+
super(PNetLin, self).__init__()
|
29 |
+
|
30 |
+
self.pnet_type = pnet_type
|
31 |
+
self.pnet_tune = pnet_tune
|
32 |
+
self.pnet_rand = pnet_rand
|
33 |
+
self.spatial = spatial
|
34 |
+
self.lpips = lpips
|
35 |
+
self.version = version
|
36 |
+
self.scaling_layer = ScalingLayer()
|
37 |
+
|
38 |
+
if(self.pnet_type in ['vgg','vgg16']):
|
39 |
+
net_type = pn.vgg16
|
40 |
+
self.chns = [64,128,256,512,512]
|
41 |
+
elif(self.pnet_type=='alex'):
|
42 |
+
net_type = pn.alexnet
|
43 |
+
self.chns = [64,192,384,256,256]
|
44 |
+
elif(self.pnet_type=='squeeze'):
|
45 |
+
net_type = pn.squeezenet
|
46 |
+
self.chns = [64,128,256,384,384,512,512]
|
47 |
+
self.L = len(self.chns)
|
48 |
+
|
49 |
+
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
|
50 |
+
|
51 |
+
if(lpips):
|
52 |
+
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
|
53 |
+
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
|
54 |
+
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
|
55 |
+
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
|
56 |
+
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
|
57 |
+
self.lins = [self.lin0,self.lin1,self.lin2,self.lin3,self.lin4]
|
58 |
+
if(self.pnet_type=='squeeze'): # 7 layers for squeezenet
|
59 |
+
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
|
60 |
+
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
|
61 |
+
self.lins+=[self.lin5,self.lin6]
|
62 |
+
|
63 |
+
def forward(self, in0, in1, retPerLayer=False):
|
64 |
+
# v0.0 - original release had a bug, where input was not scaled
|
65 |
+
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version=='0.1' else (in0, in1)
|
66 |
+
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
|
67 |
+
feats0, feats1, diffs = {}, {}, {}
|
68 |
+
|
69 |
+
for kk in range(self.L):
|
70 |
+
feats0[kk], feats1[kk] = util.normalize_tensor(outs0[kk]), util.normalize_tensor(outs1[kk])
|
71 |
+
diffs[kk] = (feats0[kk]-feats1[kk])**2
|
72 |
+
|
73 |
+
if(self.lpips):
|
74 |
+
if(self.spatial):
|
75 |
+
res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)]
|
76 |
+
else:
|
77 |
+
res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)]
|
78 |
+
else:
|
79 |
+
if(self.spatial):
|
80 |
+
res = [upsample(diffs[kk].sum(dim=1,keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)]
|
81 |
+
else:
|
82 |
+
res = [spatial_average(diffs[kk].sum(dim=1,keepdim=True), keepdim=True) for kk in range(self.L)]
|
83 |
+
|
84 |
+
val = res[0]
|
85 |
+
for l in range(1,self.L):
|
86 |
+
val += res[l]
|
87 |
+
|
88 |
+
if(retPerLayer):
|
89 |
+
return (val, res)
|
90 |
+
else:
|
91 |
+
return val
|
92 |
+
|
93 |
+
class ScalingLayer(nn.Module):
|
94 |
+
def __init__(self):
|
95 |
+
super(ScalingLayer, self).__init__()
|
96 |
+
self.register_buffer('shift', torch.Tensor([-.030,-.088,-.188])[None,:,None,None])
|
97 |
+
self.register_buffer('scale', torch.Tensor([.458,.448,.450])[None,:,None,None])
|
98 |
+
|
99 |
+
def forward(self, inp):
|
100 |
+
return (inp - self.shift) / self.scale
|
101 |
+
|
102 |
+
|
103 |
+
class NetLinLayer(nn.Module):
|
104 |
+
''' A single linear layer which does a 1x1 conv '''
|
105 |
+
def __init__(self, chn_in, chn_out=1, use_dropout=False):
|
106 |
+
super(NetLinLayer, self).__init__()
|
107 |
+
|
108 |
+
layers = [nn.Dropout(),] if(use_dropout) else []
|
109 |
+
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),]
|
110 |
+
self.model = nn.Sequential(*layers)
|
111 |
+
|
112 |
+
|
113 |
+
class Dist2LogitLayer(nn.Module):
|
114 |
+
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
|
115 |
+
def __init__(self, chn_mid=32, use_sigmoid=True):
|
116 |
+
super(Dist2LogitLayer, self).__init__()
|
117 |
+
|
118 |
+
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True),]
|
119 |
+
layers += [nn.LeakyReLU(0.2,True),]
|
120 |
+
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True),]
|
121 |
+
layers += [nn.LeakyReLU(0.2,True),]
|
122 |
+
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True),]
|
123 |
+
if(use_sigmoid):
|
124 |
+
layers += [nn.Sigmoid(),]
|
125 |
+
self.model = nn.Sequential(*layers)
|
126 |
+
|
127 |
+
def forward(self,d0,d1,eps=0.1):
|
128 |
+
return self.model.forward(torch.cat((d0,d1,d0-d1,d0/(d1+eps),d1/(d0+eps)),dim=1))
|
129 |
+
|
130 |
+
class BCERankingLoss(nn.Module):
|
131 |
+
def __init__(self, chn_mid=32):
|
132 |
+
super(BCERankingLoss, self).__init__()
|
133 |
+
self.net = Dist2LogitLayer(chn_mid=chn_mid)
|
134 |
+
# self.parameters = list(self.net.parameters())
|
135 |
+
self.loss = torch.nn.BCELoss()
|
136 |
+
|
137 |
+
def forward(self, d0, d1, judge):
|
138 |
+
per = (judge+1.)/2.
|
139 |
+
self.logit = self.net.forward(d0,d1)
|
140 |
+
return self.loss(self.logit, per)
|
141 |
+
|
142 |
+
# L2, DSSIM metrics
|
143 |
+
class FakeNet(nn.Module):
|
144 |
+
def __init__(self, use_gpu=True, colorspace='Lab'):
|
145 |
+
super(FakeNet, self).__init__()
|
146 |
+
self.use_gpu = use_gpu
|
147 |
+
self.colorspace=colorspace
|
148 |
+
|
149 |
+
class L2(FakeNet):
|
150 |
+
|
151 |
+
def forward(self, in0, in1, retPerLayer=None):
|
152 |
+
assert(in0.size()[0]==1) # currently only supports batchSize 1
|
153 |
+
|
154 |
+
if(self.colorspace=='RGB'):
|
155 |
+
(N,C,X,Y) = in0.size()
|
156 |
+
value = torch.mean(torch.mean(torch.mean((in0-in1)**2,dim=1).view(N,1,X,Y),dim=2).view(N,1,1,Y),dim=3).view(N)
|
157 |
+
return value
|
158 |
+
elif(self.colorspace=='Lab'):
|
159 |
+
value = util.l2(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)),
|
160 |
+
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
|
161 |
+
ret_var = Variable( torch.Tensor((value,) ) )
|
162 |
+
if(self.use_gpu):
|
163 |
+
ret_var = ret_var.cuda()
|
164 |
+
return ret_var
|
165 |
+
|
166 |
+
class DSSIM(FakeNet):
|
167 |
+
|
168 |
+
def forward(self, in0, in1, retPerLayer=None):
|
169 |
+
assert(in0.size()[0]==1) # currently only supports batchSize 1
|
170 |
+
|
171 |
+
if(self.colorspace=='RGB'):
|
172 |
+
value = util.dssim(1.*util.tensor2im(in0.data), 1.*util.tensor2im(in1.data), range=255.).astype('float')
|
173 |
+
elif(self.colorspace=='Lab'):
|
174 |
+
value = util.dssim(util.tensor2np(util.tensor2tensorlab(in0.data,to_norm=False)),
|
175 |
+
util.tensor2np(util.tensor2tensorlab(in1.data,to_norm=False)), range=100.).astype('float')
|
176 |
+
ret_var = Variable( torch.Tensor((value,) ) )
|
177 |
+
if(self.use_gpu):
|
178 |
+
ret_var = ret_var.cuda()
|
179 |
+
return ret_var
|
180 |
+
|
181 |
+
def print_network(net):
|
182 |
+
num_params = 0
|
183 |
+
for param in net.parameters():
|
184 |
+
num_params += param.numel()
|
185 |
+
print('Network',net)
|
186 |
+
print('Total number of parameters: %d' % num_params)
|