Spaces:
Running
Running
add rich debug message and dedicated display ui
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from huggingface_hub import hf_hub_download
|
|
8 |
from llama_cpp import Llama
|
9 |
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
10 |
import base64
|
|
|
11 |
|
12 |
# ----------------------------------------
|
13 |
# Model configurations: per-size prefixes and repos
|
@@ -91,7 +92,8 @@ def update_llm(size, model_file, clip_file):
|
|
91 |
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file):
|
92 |
mf, cf = ensure_weights(size, model_file, clip_file)
|
93 |
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False)
|
94 |
-
llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024,
|
|
|
95 |
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm})
|
96 |
return None # no UI output
|
97 |
|
@@ -103,14 +105,29 @@ def get_weight_files(size):
|
|
103 |
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
|
104 |
return model_files, clip_files
|
105 |
|
106 |
-
# Caption using cached llm
|
107 |
|
108 |
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt):
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
112 |
img = cv2.resize(frame.copy(), (384, 384))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
success, jpeg = cv2.imencode('.jpg', img)
|
|
|
|
|
|
|
|
|
114 |
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode()
|
115 |
messages = [
|
116 |
{"role": "system", "content": sys_prompt},
|
@@ -119,19 +136,34 @@ def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, u
|
|
119 |
{"type": "text", "text": usr_prompt}
|
120 |
]}
|
121 |
]
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
messages=messages,
|
126 |
max_tokens=128,
|
127 |
temperature=0.1,
|
128 |
stop=["<end_of_utterance>"]
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
import gc
|
132 |
gc.collect()
|
|
|
|
|
133 |
|
134 |
-
return
|
135 |
|
136 |
# Gradio UI
|
137 |
|
@@ -141,7 +173,7 @@ def main():
|
|
141 |
mf, cf = get_weight_files(default)
|
142 |
|
143 |
with gr.Blocks() as demo:
|
144 |
-
gr.Markdown("## 🎥 Real-Time Camera Captioning")
|
145 |
with gr.Row():
|
146 |
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
|
147 |
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
|
@@ -163,33 +195,22 @@ def main():
|
|
163 |
inputs=[size_dd],
|
164 |
outputs=[model_dd, clip_dd]
|
165 |
)
|
166 |
-
|
167 |
-
|
168 |
-
model_dd.change(
|
169 |
-
fn=lambda sz, mf, cf: update_llm(sz, mf, cf),
|
170 |
-
inputs=[size_dd, model_dd, clip_dd],
|
171 |
-
outputs=[]
|
172 |
-
)
|
173 |
-
# When clip weight changes: preload llm
|
174 |
-
clip_dd.change(
|
175 |
-
fn=lambda sz, mf, cf: update_llm(sz, mf, cf),
|
176 |
-
inputs=[size_dd, model_dd, clip_dd],
|
177 |
-
outputs=[]
|
178 |
-
)
|
179 |
-
|
180 |
-
# Initial preload with defaults
|
181 |
update_llm(default, mf[0], cf[0])
|
182 |
|
183 |
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
|
184 |
-
sys_p
|
185 |
-
usr_p
|
186 |
-
cam
|
187 |
-
cap
|
|
|
188 |
|
189 |
cam.stream(
|
190 |
fn=caption_frame,
|
191 |
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p],
|
192 |
-
outputs=[cap],
|
|
|
193 |
)
|
194 |
|
195 |
demo.launch()
|
|
|
8 |
from llama_cpp import Llama
|
9 |
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
10 |
import base64
|
11 |
+
import gc
|
12 |
|
13 |
# ----------------------------------------
|
14 |
# Model configurations: per-size prefixes and repos
|
|
|
92 |
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file):
|
93 |
mf, cf = ensure_weights(size, model_file, clip_file)
|
94 |
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False)
|
95 |
+
llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024,
|
96 |
+
verbose=False, n_threads=min(2, os.cpu_count()))
|
97 |
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm})
|
98 |
return None # no UI output
|
99 |
|
|
|
105 |
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
|
106 |
return model_files, clip_files
|
107 |
|
108 |
+
# Caption using cached llm with real-time debug logs
|
109 |
|
110 |
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt):
|
111 |
+
debug_msgs = []
|
112 |
+
timestamp = time.strftime('%H:%M:%S')
|
113 |
+
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}")
|
114 |
+
|
115 |
+
t_resize = time.time()
|
116 |
img = cv2.resize(frame.copy(), (384, 384))
|
117 |
+
elapsed = (time.time() - t_resize) * 1000
|
118 |
+
timestamp = time.strftime('%H:%M:%S')
|
119 |
+
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms")
|
120 |
+
|
121 |
+
timestamp = time.strftime('%H:%M:%S')
|
122 |
+
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms")
|
123 |
+
time.sleep(interval_ms / 1000)
|
124 |
+
|
125 |
+
t_enc = time.time()
|
126 |
success, jpeg = cv2.imencode('.jpg', img)
|
127 |
+
elapsed = (time.time() - t_enc) * 1000
|
128 |
+
timestamp = time.strftime('%H:%M:%S')
|
129 |
+
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms")
|
130 |
+
|
131 |
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode()
|
132 |
messages = [
|
133 |
{"role": "system", "content": sys_prompt},
|
|
|
136 |
{"type": "text", "text": usr_prompt}
|
137 |
]}
|
138 |
]
|
139 |
+
|
140 |
+
timestamp = time.strftime('%H:%M:%S')
|
141 |
+
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM")
|
142 |
+
# re-init handler for image
|
143 |
+
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=False)
|
144 |
+
timestamp = time.strftime('%H:%M:%S')
|
145 |
+
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler")
|
146 |
+
|
147 |
+
t_start = time.time()
|
148 |
+
resp = model_cache['llm'].create_chat_completion(
|
149 |
messages=messages,
|
150 |
max_tokens=128,
|
151 |
temperature=0.1,
|
152 |
stop=["<end_of_utterance>"]
|
153 |
)
|
154 |
+
elapsed = (time.time() - t_start) * 1000
|
155 |
+
timestamp = time.strftime('%H:%M:%S')
|
156 |
+
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms")
|
157 |
+
|
158 |
+
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
|
159 |
+
timestamp = time.strftime('%H:%M:%S')
|
160 |
+
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars")
|
161 |
|
|
|
162 |
gc.collect()
|
163 |
+
timestamp = time.strftime('%H:%M:%S')
|
164 |
+
debug_msgs.append(f"[{timestamp}] Garbage collected")
|
165 |
|
166 |
+
return content, "\n".join(debug_msgs)
|
167 |
|
168 |
# Gradio UI
|
169 |
|
|
|
173 |
mf, cf = get_weight_files(default)
|
174 |
|
175 |
with gr.Blocks() as demo:
|
176 |
+
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs")
|
177 |
with gr.Row():
|
178 |
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
|
179 |
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
|
|
|
195 |
inputs=[size_dd],
|
196 |
outputs=[model_dd, clip_dd]
|
197 |
)
|
198 |
+
model_dd.change(lambda sz, mf, cf: update_llm(sz, mf, cf), inputs=[size_dd, model_dd, clip_dd], outputs=[])
|
199 |
+
clip_dd.change(lambda sz, mf, cf: update_llm(sz, mf, cf), inputs=[size_dd, model_dd, clip_dd], outputs=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
update_llm(default, mf[0], cf[0])
|
201 |
|
202 |
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
|
203 |
+
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
|
204 |
+
usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt')
|
205 |
+
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
|
206 |
+
cap = gr.Textbox(interactive=False, label='Caption')
|
207 |
+
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log')
|
208 |
|
209 |
cam.stream(
|
210 |
fn=caption_frame,
|
211 |
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p],
|
212 |
+
outputs=[cap, log_box],
|
213 |
+
time_limit=600
|
214 |
)
|
215 |
|
216 |
demo.launch()
|