Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README (1).md +11 -0
- README.md +2 -8
- Samples-20250408T035849Z-001.zip +3 -0
- Samples/v_CricketShot_g07_c03.mp4 +3 -0
- Samples/v_PlayingCello_g04_c01.mp4 +3 -0
- app.ipynb +758 -0
- app.py +126 -0
- gitattributes.txt +27 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Samples/v_CricketShot_g07_c03.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Samples/v_PlayingCello_g04_c01.mp4 filter=lfs diff=lfs merge=lfs -text
|
README (1).md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Video Classification with CNN-RNN
|
3 |
+
emoji: 🎬
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
title: Video
|
3 |
-
emoji: ⚡
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: blue
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.25.0
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Video
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 5.23.3
|
6 |
---
|
|
|
|
Samples-20250408T035849Z-001.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:882856ee78f26bc7e97293b2bb6fffe9088cbc2a3c5abf5b04725941f9a37477
|
3 |
+
size 3572793
|
Samples/v_CricketShot_g07_c03.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27bb7648cd61f972a453bf126c48d1796e8af69bb446ceb85f0bfe8d0835a91b
|
3 |
+
size 1492498
|
Samples/v_PlayingCello_g04_c01.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d46406b76af33b93b3f1482ebf3821ed1051b9cabcb5abda3dbbadcc03c9f43
|
3 |
+
size 2079055
|
app.ipynb
ADDED
@@ -0,0 +1,758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"executionInfo": {
|
11 |
+
"elapsed": 19730,
|
12 |
+
"status": "ok",
|
13 |
+
"timestamp": 1744098140927,
|
14 |
+
"user": {
|
15 |
+
"displayName": "Lan Hoang",
|
16 |
+
"userId": "15367629887304430933"
|
17 |
+
},
|
18 |
+
"user_tz": -420
|
19 |
+
},
|
20 |
+
"id": "Vnowuw1FWR6Y",
|
21 |
+
"outputId": "18eb608c-528b-4a68-84c1-f83e2d1b5091"
|
22 |
+
},
|
23 |
+
"outputs": [
|
24 |
+
{
|
25 |
+
"name": "stdout",
|
26 |
+
"output_type": "stream",
|
27 |
+
"text": [
|
28 |
+
"Requirement already satisfied: gradio in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (5.23.3)\n",
|
29 |
+
"Requirement already satisfied: aiofiles<24.0,>=22.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (23.2.1)\n",
|
30 |
+
"Requirement already satisfied: anyio<5.0,>=3.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (4.4.0)\n",
|
31 |
+
"Requirement already satisfied: fastapi<1.0,>=0.115.2 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.115.12)\n",
|
32 |
+
"Requirement already satisfied: ffmpy in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.5.0)\n",
|
33 |
+
"Requirement already satisfied: gradio-client==1.8.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (1.8.0)\n",
|
34 |
+
"Requirement already satisfied: groovy~=0.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.1.2)\n",
|
35 |
+
"Requirement already satisfied: httpx>=0.24.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.27.0)\n",
|
36 |
+
"Requirement already satisfied: huggingface-hub>=0.28.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.30.2)\n",
|
37 |
+
"Requirement already satisfied: jinja2<4.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (3.1.4)\n",
|
38 |
+
"Requirement already satisfied: markupsafe<4.0,>=2.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (2.1.5)\n",
|
39 |
+
"Requirement already satisfied: numpy<3.0,>=1.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (1.26.4)\n",
|
40 |
+
"Requirement already satisfied: orjson~=3.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (3.10.16)\n",
|
41 |
+
"Requirement already satisfied: packaging in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (24.1)\n",
|
42 |
+
"Requirement already satisfied: pandas<3.0,>=1.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (2.2.2)\n",
|
43 |
+
"Requirement already satisfied: pillow<12.0,>=8.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (10.4.0)\n",
|
44 |
+
"Requirement already satisfied: pydantic<2.12,>=2.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (2.11.2)\n",
|
45 |
+
"Requirement already satisfied: pydub in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.25.1)\n",
|
46 |
+
"Requirement already satisfied: python-multipart>=0.0.18 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.0.20)\n",
|
47 |
+
"Requirement already satisfied: pyyaml<7.0,>=5.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (6.0.2)\n",
|
48 |
+
"Requirement already satisfied: ruff>=0.9.3 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.11.4)\n",
|
49 |
+
"Requirement already satisfied: safehttpx<0.2.0,>=0.1.6 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.1.6)\n",
|
50 |
+
"Requirement already satisfied: semantic-version~=2.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (2.10.0)\n",
|
51 |
+
"Requirement already satisfied: starlette<1.0,>=0.40.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.46.1)\n",
|
52 |
+
"Requirement already satisfied: tomlkit<0.14.0,>=0.12.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.13.2)\n",
|
53 |
+
"Requirement already satisfied: typer<1.0,>=0.12 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.15.2)\n",
|
54 |
+
"Requirement already satisfied: typing-extensions~=4.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (4.12.2)\n",
|
55 |
+
"Requirement already satisfied: uvicorn>=0.14.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio) (0.34.0)\n",
|
56 |
+
"Requirement already satisfied: fsspec in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio-client==1.8.0->gradio) (2025.2.0)\n",
|
57 |
+
"Requirement already satisfied: websockets<16.0,>=10.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from gradio-client==1.8.0->gradio) (15.0.1)\n",
|
58 |
+
"Requirement already satisfied: idna>=2.8 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from anyio<5.0,>=3.0->gradio) (3.7)\n",
|
59 |
+
"Requirement already satisfied: sniffio>=1.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from anyio<5.0,>=3.0->gradio) (1.3.1)\n",
|
60 |
+
"Requirement already satisfied: exceptiongroup>=1.0.2 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from anyio<5.0,>=3.0->gradio) (1.2.2)\n",
|
61 |
+
"Requirement already satisfied: certifi in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from httpx>=0.24.1->gradio) (2024.7.4)\n",
|
62 |
+
"Requirement already satisfied: httpcore==1.* in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from httpx>=0.24.1->gradio) (1.0.5)\n",
|
63 |
+
"Requirement already satisfied: h11<0.15,>=0.13 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.14.0)\n",
|
64 |
+
"Requirement already satisfied: filelock in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from huggingface-hub>=0.28.1->gradio) (3.17.0)\n",
|
65 |
+
"Requirement already satisfied: requests in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from huggingface-hub>=0.28.1->gradio) (2.32.3)\n",
|
66 |
+
"Requirement already satisfied: tqdm>=4.42.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from huggingface-hub>=0.28.1->gradio) (4.67.1)\n",
|
67 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas<3.0,>=1.0->gradio) (2.9.0.post0)\n",
|
68 |
+
"Requirement already satisfied: pytz>=2020.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
|
69 |
+
"Requirement already satisfied: tzdata>=2022.7 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
|
70 |
+
"Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pydantic<2.12,>=2.0->gradio) (0.7.0)\n",
|
71 |
+
"Requirement already satisfied: pydantic-core==2.33.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pydantic<2.12,>=2.0->gradio) (2.33.1)\n",
|
72 |
+
"Requirement already satisfied: typing-inspection>=0.4.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pydantic<2.12,>=2.0->gradio) (0.4.0)\n",
|
73 |
+
"Requirement already satisfied: click>=8.0.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from typer<1.0,>=0.12->gradio) (8.1.8)\n",
|
74 |
+
"Requirement already satisfied: shellingham>=1.3.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from typer<1.0,>=0.12->gradio) (1.5.4)\n",
|
75 |
+
"Requirement already satisfied: rich>=10.11.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from typer<1.0,>=0.12->gradio) (13.9.2)\n",
|
76 |
+
"Requirement already satisfied: colorama in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from click>=8.0.0->typer<1.0,>=0.12->gradio) (0.4.6)\n",
|
77 |
+
"Requirement already satisfied: six>=1.5 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from python-dateutil>=2.8.2->pandas<3.0,>=1.0->gradio) (1.16.0)\n",
|
78 |
+
"Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (3.0.0)\n",
|
79 |
+
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.18.0)\n",
|
80 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from requests->huggingface-hub>=0.28.1->gradio) (3.3.2)\n",
|
81 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from requests->huggingface-hub>=0.28.1->gradio) (2.2.2)\n",
|
82 |
+
"Requirement already satisfied: mdurl~=0.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio) (0.1.2)\n",
|
83 |
+
"Collecting git+https://github.com/tensorflow/docs\n",
|
84 |
+
" Cloning https://github.com/tensorflow/docs to c:\\users\\pc\\appdata\\local\\temp\\pip-req-build-cktlp7ez\n",
|
85 |
+
" Resolved https://github.com/tensorflow/docs to commit 18c3a45517af27c8513e165b8a52e6bbc1204b99\n",
|
86 |
+
" Preparing metadata (setup.py): started\n",
|
87 |
+
" Preparing metadata (setup.py): finished with status 'done'\n",
|
88 |
+
"Requirement already satisfied: astor in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tensorflow-docs==2025.3.6.10029) (0.8.1)\n",
|
89 |
+
"Requirement already satisfied: absl-py in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tensorflow-docs==2025.3.6.10029) (2.1.0)\n",
|
90 |
+
"Requirement already satisfied: jinja2 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tensorflow-docs==2025.3.6.10029) (3.1.4)\n",
|
91 |
+
"Requirement already satisfied: nbformat in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tensorflow-docs==2025.3.6.10029) (5.10.4)\n",
|
92 |
+
"Requirement already satisfied: protobuf>=3.12 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tensorflow-docs==2025.3.6.10029) (4.25.5)\n",
|
93 |
+
"Requirement already satisfied: pyyaml in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from tensorflow-docs==2025.3.6.10029) (6.0.2)\n",
|
94 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jinja2->tensorflow-docs==2025.3.6.10029) (2.1.5)\n",
|
95 |
+
"Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from nbformat->tensorflow-docs==2025.3.6.10029) (2.20.0)\n",
|
96 |
+
"Requirement already satisfied: jsonschema>=2.6 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from nbformat->tensorflow-docs==2025.3.6.10029) (4.23.0)\n",
|
97 |
+
"Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from nbformat->tensorflow-docs==2025.3.6.10029) (5.7.2)\n",
|
98 |
+
"Requirement already satisfied: traitlets>=5.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from nbformat->tensorflow-docs==2025.3.6.10029) (5.14.3)\n",
|
99 |
+
"Requirement already satisfied: attrs>=22.2.0 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2025.3.6.10029) (24.2.0)\n",
|
100 |
+
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2025.3.6.10029) (2023.12.1)\n",
|
101 |
+
"Requirement already satisfied: referencing>=0.28.4 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2025.3.6.10029) (0.35.1)\n",
|
102 |
+
"Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jsonschema>=2.6->nbformat->tensorflow-docs==2025.3.6.10029) (0.20.0)\n",
|
103 |
+
"Requirement already satisfied: platformdirs>=2.5 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->nbformat->tensorflow-docs==2025.3.6.10029) (4.2.2)\n",
|
104 |
+
"Requirement already satisfied: pywin32>=300 in c:\\users\\pc\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->nbformat->tensorflow-docs==2025.3.6.10029) (306)\n"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"name": "stderr",
|
109 |
+
"output_type": "stream",
|
110 |
+
"text": [
|
111 |
+
" Running command git clone --filter=blob:none --quiet https://github.com/tensorflow/docs 'C:\\Users\\PC\\AppData\\Local\\Temp\\pip-req-build-cktlp7ez'\n"
|
112 |
+
]
|
113 |
+
}
|
114 |
+
],
|
115 |
+
"source": [
|
116 |
+
"%pip install gradio\n",
|
117 |
+
"%pip install git+https://github.com/tensorflow/docs"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 2,
|
123 |
+
"metadata": {
|
124 |
+
"executionInfo": {
|
125 |
+
"elapsed": 18553,
|
126 |
+
"status": "ok",
|
127 |
+
"timestamp": 1744098159483,
|
128 |
+
"user": {
|
129 |
+
"displayName": "Lan Hoang",
|
130 |
+
"userId": "15367629887304430933"
|
131 |
+
},
|
132 |
+
"user_tz": -420
|
133 |
+
},
|
134 |
+
"id": "nBrcqD-WktG-"
|
135 |
+
},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"name": "stderr",
|
139 |
+
"output_type": "stream",
|
140 |
+
"text": [
|
141 |
+
"c:\\Users\\PC\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
142 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
143 |
+
]
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"source": [
|
147 |
+
"# -*- coding: utf-8 -*-\n",
|
148 |
+
"\"\"\"🎬 Keras Video Classification CNN-RNN model\n",
|
149 |
+
"\n",
|
150 |
+
"Spaces for showing the model usage.\n",
|
151 |
+
"\n",
|
152 |
+
"Author:\n",
|
153 |
+
" - Thomas Chaigneau @ChainYo\n",
|
154 |
+
"\"\"\"\n",
|
155 |
+
"import os\n",
|
156 |
+
"import cv2\n",
|
157 |
+
"\n",
|
158 |
+
"import gradio as gr\n",
|
159 |
+
"import numpy as np\n",
|
160 |
+
"\n",
|
161 |
+
"from tensorflow import keras\n",
|
162 |
+
"\n",
|
163 |
+
"from tensorflow_docs.vis import embed\n",
|
164 |
+
"\n",
|
165 |
+
"from huggingface_hub import from_pretrained_keras"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "code",
|
170 |
+
"execution_count": null,
|
171 |
+
"metadata": {
|
172 |
+
"executionInfo": {
|
173 |
+
"elapsed": 109,
|
174 |
+
"status": "ok",
|
175 |
+
"timestamp": 1744098315598,
|
176 |
+
"user": {
|
177 |
+
"displayName": "Lan Hoang",
|
178 |
+
"userId": "15367629887304430933"
|
179 |
+
},
|
180 |
+
"user_tz": -420
|
181 |
+
},
|
182 |
+
"id": "2l8ZXA4-XD_-"
|
183 |
+
},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"name": "stderr",
|
187 |
+
"output_type": "stream",
|
188 |
+
"text": [
|
189 |
+
"A subdirectory or file Samples already exists.\n"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"source": [
|
194 |
+
"%mkdir Samples"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": 18,
|
200 |
+
"metadata": {
|
201 |
+
"colab": {
|
202 |
+
"base_uri": "https://localhost:8080/",
|
203 |
+
"height": 677,
|
204 |
+
"referenced_widgets": [
|
205 |
+
"7953decbcc66485d9e477a9d45777f99",
|
206 |
+
"f8709807dedf4e349dd9d463db6abac7",
|
207 |
+
"53a737a6c2794edcbd2d454273753b8b",
|
208 |
+
"5b22eb49678f44c09cf7e5a6007133de",
|
209 |
+
"32364e76989b40b39659c3f93e727fde",
|
210 |
+
"cb23ba857ca548e88967a0ef2d3f32e4",
|
211 |
+
"70331cb723934c37abd7a1815a969841",
|
212 |
+
"7c618cdc320f4cb3909fe11d4124cd85",
|
213 |
+
"d9fb30527f9a4bed9896bf89cbd4eb54",
|
214 |
+
"fd8b65aab251427bac9380d843ad02e1",
|
215 |
+
"9a3b710001334adc8684c2227e2b556b"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"executionInfo": {
|
219 |
+
"elapsed": 9546,
|
220 |
+
"status": "ok",
|
221 |
+
"timestamp": 1744103445447,
|
222 |
+
"user": {
|
223 |
+
"displayName": "Lan Hoang",
|
224 |
+
"userId": "15367629887304430933"
|
225 |
+
},
|
226 |
+
"user_tz": -420
|
227 |
+
},
|
228 |
+
"id": "G_1_pfzxlXSo",
|
229 |
+
"outputId": "f1b2fb37-45b1-450b-ff8e-09fcb6f8ee55"
|
230 |
+
},
|
231 |
+
"outputs": [
|
232 |
+
{
|
233 |
+
"data": {
|
234 |
+
"application/vnd.jupyter.widget-view+json": {
|
235 |
+
"model_id": "7953decbcc66485d9e477a9d45777f99",
|
236 |
+
"version_major": 2,
|
237 |
+
"version_minor": 0
|
238 |
+
},
|
239 |
+
"text/plain": [
|
240 |
+
"Fetching 11 files: 0%| | 0/11 [00:00<?, ?it/s]"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
"metadata": {},
|
244 |
+
"output_type": "display_data"
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"name": "stdout",
|
248 |
+
"output_type": "stream",
|
249 |
+
"text": [
|
250 |
+
"Running Gradio in a Colab notebook requires sharing enabled. Automatically setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
251 |
+
"\n",
|
252 |
+
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
|
253 |
+
"* Running on public URL: https://06f7718827d3f617a0.gradio.live\n",
|
254 |
+
"\n",
|
255 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"data": {
|
260 |
+
"text/html": [
|
261 |
+
"<div><iframe src=\"https://06f7718827d3f617a0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
262 |
+
],
|
263 |
+
"text/plain": [
|
264 |
+
"<IPython.core.display.HTML object>"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
"metadata": {},
|
268 |
+
"output_type": "display_data"
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"data": {
|
272 |
+
"text/plain": []
|
273 |
+
},
|
274 |
+
"execution_count": 18,
|
275 |
+
"metadata": {},
|
276 |
+
"output_type": "execute_result"
|
277 |
+
}
|
278 |
+
],
|
279 |
+
"source": [
|
280 |
+
"# Kích thước ảnh đầu vào và số lượng đặc trưng\n",
|
281 |
+
"IMG_SIZE = 224\n",
|
282 |
+
"NUM_FEATURES = 2048\n",
|
283 |
+
"\n",
|
284 |
+
"# Tải mô hình CNN-RNN từ HuggingFace\n",
|
285 |
+
"model = from_pretrained_keras(\"keras-io/video-classification-cnn-rnn\")\n",
|
286 |
+
"\n",
|
287 |
+
"# Tạo danh sách video ví dụ từ thư mục Samples\n",
|
288 |
+
"samples = []\n",
|
289 |
+
"for file in os.listdir(\"Samples\"):\n",
|
290 |
+
" tag = file.split(\"_\")[1]\n",
|
291 |
+
" samples.append([f\"samples/{file}\"])\n",
|
292 |
+
"\n",
|
293 |
+
"# Cắt phần hình vuông ở trung tâm frame\n",
|
294 |
+
"def crop_center_square(frame):\n",
|
295 |
+
" y, x = frame.shape[0:2]\n",
|
296 |
+
" min_dim = min(y, x)\n",
|
297 |
+
" start_x = (x // 2) - (min_dim // 2)\n",
|
298 |
+
" start_y = (y // 2) - (min_dim // 2)\n",
|
299 |
+
" return frame[start_y : start_y + min_dim, start_x : start_x + min_dim]\n",
|
300 |
+
"\n",
|
301 |
+
"# Đọc video và xử lý từng frame\n",
|
302 |
+
"def load_video(path, max_frames=0, resize=(IMG_SIZE, IMG_SIZE)):\n",
|
303 |
+
" cap = cv2.VideoCapture(path)\n",
|
304 |
+
" frames = []\n",
|
305 |
+
" try:\n",
|
306 |
+
" while True:\n",
|
307 |
+
" ret, frame = cap.read()\n",
|
308 |
+
" if not ret:\n",
|
309 |
+
" break\n",
|
310 |
+
" frame = crop_center_square(frame)\n",
|
311 |
+
" frame = cv2.resize(frame, resize)\n",
|
312 |
+
" frame = frame[:, :, [2, 1, 0]]\n",
|
313 |
+
" frames.append(frame)\n",
|
314 |
+
"\n",
|
315 |
+
" if len(frames) == max_frames:\n",
|
316 |
+
" break\n",
|
317 |
+
" finally:\n",
|
318 |
+
" cap.release()\n",
|
319 |
+
" return np.array(frames)\n",
|
320 |
+
"\n",
|
321 |
+
"# Xây dựng mô hình trích xuất đặc trưng (InceptionV3)\n",
|
322 |
+
"def build_feature_extractor():\n",
|
323 |
+
" feature_extractor = keras.applications.InceptionV3(\n",
|
324 |
+
" weights=\"imagenet\",\n",
|
325 |
+
" include_top=False,\n",
|
326 |
+
" pooling=\"avg\",\n",
|
327 |
+
" input_shape=(IMG_SIZE, IMG_SIZE, 3),\n",
|
328 |
+
" )\n",
|
329 |
+
" preprocess_input = keras.applications.inception_v3.preprocess_input\n",
|
330 |
+
"\n",
|
331 |
+
" inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))\n",
|
332 |
+
" preprocessed = preprocess_input(inputs)\n",
|
333 |
+
"\n",
|
334 |
+
" outputs = feature_extractor(preprocessed)\n",
|
335 |
+
" return keras.Model(inputs, outputs, name=\"feature_extractor\")\n",
|
336 |
+
"\n",
|
337 |
+
"# Tạo feature extractor 1 lần\n",
|
338 |
+
"feature_extractor = build_feature_extractor()\n",
|
339 |
+
"\n",
|
340 |
+
"# Trích xuất đặc trưng cho từng frame của video\n",
|
341 |
+
"def prepare_video(frames, max_seq_length: int = 20):\n",
|
342 |
+
" frames = frames[None, ...]\n",
|
343 |
+
" frame_mask = np.zeros(shape=(1, max_seq_length,), dtype=\"bool\")\n",
|
344 |
+
" frame_features = np.zeros(shape=(1, max_seq_length, NUM_FEATURES), dtype=\"float32\")\n",
|
345 |
+
"\n",
|
346 |
+
" for i, batch in enumerate(frames):\n",
|
347 |
+
" video_length = batch.shape[0]\n",
|
348 |
+
" length = min(max_seq_length, video_length)\n",
|
349 |
+
" for j in range(length):\n",
|
350 |
+
" frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])\n",
|
351 |
+
" frame_mask[i, :length] = 1 # 1 = not masked, 0 = masked\n",
|
352 |
+
"\n",
|
353 |
+
" return frame_features, frame_mask\n",
|
354 |
+
"\n",
|
355 |
+
"# Dự đoán hành động từ video\n",
|
356 |
+
"def sequence_prediction(path):\n",
|
357 |
+
" class_vocab = [\"CricketShot\", \"PlayingCello\", \"Punch\", \"ShavingBeard\", \"TennisSwing\"]\n",
|
358 |
+
"\n",
|
359 |
+
" frames = load_video(path)\n",
|
360 |
+
" frame_features, frame_mask = prepare_video(frames)\n",
|
361 |
+
" probabilities = model.predict([frame_features, frame_mask])[0]\n",
|
362 |
+
"\n",
|
363 |
+
" preds = {}\n",
|
364 |
+
" for i in np.argsort(probabilities)[::-1]:\n",
|
365 |
+
" preds[class_vocab[i]] = float(probabilities[i])\n",
|
366 |
+
" return preds\n",
|
367 |
+
"\n",
|
368 |
+
"# HTML mô tả bên dưới app\n",
|
369 |
+
"article = article = \"<div style='text-align: center;'><a href='https://github.com/ChainYo' target='_blank'>Space by Thomas Chaigneau</a><br><a href='https://keras.io/examples/vision/video_classification/' target='_blank'>Keras example by Sayak Paul</a></div>\"\n",
|
370 |
+
"\n",
|
371 |
+
"# Tạo giao diện Gradio\n",
|
372 |
+
"app = gr.Interface(\n",
|
373 |
+
" fn=sequence_prediction,\n",
|
374 |
+
" inputs=[gr.Video(label=\"Video\")],\n",
|
375 |
+
" outputs=gr.Label(label=\"Prediction\"),\n",
|
376 |
+
" title=\"Keras Video Classification with CNN-RNN\",\n",
|
377 |
+
" description=\"Video classification demo using CNN-RNN based model.\",\n",
|
378 |
+
" article=article,\n",
|
379 |
+
" examples=samples\n",
|
380 |
+
")\n",
|
381 |
+
"\n",
|
382 |
+
"# Khởi chạy ứng dụng\n",
|
383 |
+
"app.launch()\n",
|
384 |
+
"\n"
|
385 |
+
]
|
386 |
+
}
|
387 |
+
],
|
388 |
+
"metadata": {
|
389 |
+
"colab": {
|
390 |
+
"authorship_tag": "ABX9TyNo8ELbXbt4Di76kKEeSLhJ",
|
391 |
+
"provenance": []
|
392 |
+
},
|
393 |
+
"kernelspec": {
|
394 |
+
"display_name": "Python 3",
|
395 |
+
"name": "python3"
|
396 |
+
},
|
397 |
+
"language_info": {
|
398 |
+
"codemirror_mode": {
|
399 |
+
"name": "ipython",
|
400 |
+
"version": 3
|
401 |
+
},
|
402 |
+
"file_extension": ".py",
|
403 |
+
"mimetype": "text/x-python",
|
404 |
+
"name": "python",
|
405 |
+
"nbconvert_exporter": "python",
|
406 |
+
"pygments_lexer": "ipython3",
|
407 |
+
"version": "3.10.5"
|
408 |
+
},
|
409 |
+
"widgets": {
|
410 |
+
"application/vnd.jupyter.widget-state+json": {
|
411 |
+
"32364e76989b40b39659c3f93e727fde": {
|
412 |
+
"model_module": "@jupyter-widgets/base",
|
413 |
+
"model_module_version": "1.2.0",
|
414 |
+
"model_name": "LayoutModel",
|
415 |
+
"state": {
|
416 |
+
"_model_module": "@jupyter-widgets/base",
|
417 |
+
"_model_module_version": "1.2.0",
|
418 |
+
"_model_name": "LayoutModel",
|
419 |
+
"_view_count": null,
|
420 |
+
"_view_module": "@jupyter-widgets/base",
|
421 |
+
"_view_module_version": "1.2.0",
|
422 |
+
"_view_name": "LayoutView",
|
423 |
+
"align_content": null,
|
424 |
+
"align_items": null,
|
425 |
+
"align_self": null,
|
426 |
+
"border": null,
|
427 |
+
"bottom": null,
|
428 |
+
"display": null,
|
429 |
+
"flex": null,
|
430 |
+
"flex_flow": null,
|
431 |
+
"grid_area": null,
|
432 |
+
"grid_auto_columns": null,
|
433 |
+
"grid_auto_flow": null,
|
434 |
+
"grid_auto_rows": null,
|
435 |
+
"grid_column": null,
|
436 |
+
"grid_gap": null,
|
437 |
+
"grid_row": null,
|
438 |
+
"grid_template_areas": null,
|
439 |
+
"grid_template_columns": null,
|
440 |
+
"grid_template_rows": null,
|
441 |
+
"height": null,
|
442 |
+
"justify_content": null,
|
443 |
+
"justify_items": null,
|
444 |
+
"left": null,
|
445 |
+
"margin": null,
|
446 |
+
"max_height": null,
|
447 |
+
"max_width": null,
|
448 |
+
"min_height": null,
|
449 |
+
"min_width": null,
|
450 |
+
"object_fit": null,
|
451 |
+
"object_position": null,
|
452 |
+
"order": null,
|
453 |
+
"overflow": null,
|
454 |
+
"overflow_x": null,
|
455 |
+
"overflow_y": null,
|
456 |
+
"padding": null,
|
457 |
+
"right": null,
|
458 |
+
"top": null,
|
459 |
+
"visibility": null,
|
460 |
+
"width": null
|
461 |
+
}
|
462 |
+
},
|
463 |
+
"53a737a6c2794edcbd2d454273753b8b": {
|
464 |
+
"model_module": "@jupyter-widgets/controls",
|
465 |
+
"model_module_version": "1.5.0",
|
466 |
+
"model_name": "FloatProgressModel",
|
467 |
+
"state": {
|
468 |
+
"_dom_classes": [],
|
469 |
+
"_model_module": "@jupyter-widgets/controls",
|
470 |
+
"_model_module_version": "1.5.0",
|
471 |
+
"_model_name": "FloatProgressModel",
|
472 |
+
"_view_count": null,
|
473 |
+
"_view_module": "@jupyter-widgets/controls",
|
474 |
+
"_view_module_version": "1.5.0",
|
475 |
+
"_view_name": "ProgressView",
|
476 |
+
"bar_style": "success",
|
477 |
+
"description": "",
|
478 |
+
"description_tooltip": null,
|
479 |
+
"layout": "IPY_MODEL_7c618cdc320f4cb3909fe11d4124cd85",
|
480 |
+
"max": 11,
|
481 |
+
"min": 0,
|
482 |
+
"orientation": "horizontal",
|
483 |
+
"style": "IPY_MODEL_d9fb30527f9a4bed9896bf89cbd4eb54",
|
484 |
+
"value": 11
|
485 |
+
}
|
486 |
+
},
|
487 |
+
"5b22eb49678f44c09cf7e5a6007133de": {
|
488 |
+
"model_module": "@jupyter-widgets/controls",
|
489 |
+
"model_module_version": "1.5.0",
|
490 |
+
"model_name": "HTMLModel",
|
491 |
+
"state": {
|
492 |
+
"_dom_classes": [],
|
493 |
+
"_model_module": "@jupyter-widgets/controls",
|
494 |
+
"_model_module_version": "1.5.0",
|
495 |
+
"_model_name": "HTMLModel",
|
496 |
+
"_view_count": null,
|
497 |
+
"_view_module": "@jupyter-widgets/controls",
|
498 |
+
"_view_module_version": "1.5.0",
|
499 |
+
"_view_name": "HTMLView",
|
500 |
+
"description": "",
|
501 |
+
"description_tooltip": null,
|
502 |
+
"layout": "IPY_MODEL_fd8b65aab251427bac9380d843ad02e1",
|
503 |
+
"placeholder": "",
|
504 |
+
"style": "IPY_MODEL_9a3b710001334adc8684c2227e2b556b",
|
505 |
+
"value": " 11/11 [00:00<00:00, 569.14it/s]"
|
506 |
+
}
|
507 |
+
},
|
508 |
+
"70331cb723934c37abd7a1815a969841": {
|
509 |
+
"model_module": "@jupyter-widgets/controls",
|
510 |
+
"model_module_version": "1.5.0",
|
511 |
+
"model_name": "DescriptionStyleModel",
|
512 |
+
"state": {
|
513 |
+
"_model_module": "@jupyter-widgets/controls",
|
514 |
+
"_model_module_version": "1.5.0",
|
515 |
+
"_model_name": "DescriptionStyleModel",
|
516 |
+
"_view_count": null,
|
517 |
+
"_view_module": "@jupyter-widgets/base",
|
518 |
+
"_view_module_version": "1.2.0",
|
519 |
+
"_view_name": "StyleView",
|
520 |
+
"description_width": ""
|
521 |
+
}
|
522 |
+
},
|
523 |
+
"7953decbcc66485d9e477a9d45777f99": {
|
524 |
+
"model_module": "@jupyter-widgets/controls",
|
525 |
+
"model_module_version": "1.5.0",
|
526 |
+
"model_name": "HBoxModel",
|
527 |
+
"state": {
|
528 |
+
"_dom_classes": [],
|
529 |
+
"_model_module": "@jupyter-widgets/controls",
|
530 |
+
"_model_module_version": "1.5.0",
|
531 |
+
"_model_name": "HBoxModel",
|
532 |
+
"_view_count": null,
|
533 |
+
"_view_module": "@jupyter-widgets/controls",
|
534 |
+
"_view_module_version": "1.5.0",
|
535 |
+
"_view_name": "HBoxView",
|
536 |
+
"box_style": "",
|
537 |
+
"children": [
|
538 |
+
"IPY_MODEL_f8709807dedf4e349dd9d463db6abac7",
|
539 |
+
"IPY_MODEL_53a737a6c2794edcbd2d454273753b8b",
|
540 |
+
"IPY_MODEL_5b22eb49678f44c09cf7e5a6007133de"
|
541 |
+
],
|
542 |
+
"layout": "IPY_MODEL_32364e76989b40b39659c3f93e727fde"
|
543 |
+
}
|
544 |
+
},
|
545 |
+
"7c618cdc320f4cb3909fe11d4124cd85": {
|
546 |
+
"model_module": "@jupyter-widgets/base",
|
547 |
+
"model_module_version": "1.2.0",
|
548 |
+
"model_name": "LayoutModel",
|
549 |
+
"state": {
|
550 |
+
"_model_module": "@jupyter-widgets/base",
|
551 |
+
"_model_module_version": "1.2.0",
|
552 |
+
"_model_name": "LayoutModel",
|
553 |
+
"_view_count": null,
|
554 |
+
"_view_module": "@jupyter-widgets/base",
|
555 |
+
"_view_module_version": "1.2.0",
|
556 |
+
"_view_name": "LayoutView",
|
557 |
+
"align_content": null,
|
558 |
+
"align_items": null,
|
559 |
+
"align_self": null,
|
560 |
+
"border": null,
|
561 |
+
"bottom": null,
|
562 |
+
"display": null,
|
563 |
+
"flex": null,
|
564 |
+
"flex_flow": null,
|
565 |
+
"grid_area": null,
|
566 |
+
"grid_auto_columns": null,
|
567 |
+
"grid_auto_flow": null,
|
568 |
+
"grid_auto_rows": null,
|
569 |
+
"grid_column": null,
|
570 |
+
"grid_gap": null,
|
571 |
+
"grid_row": null,
|
572 |
+
"grid_template_areas": null,
|
573 |
+
"grid_template_columns": null,
|
574 |
+
"grid_template_rows": null,
|
575 |
+
"height": null,
|
576 |
+
"justify_content": null,
|
577 |
+
"justify_items": null,
|
578 |
+
"left": null,
|
579 |
+
"margin": null,
|
580 |
+
"max_height": null,
|
581 |
+
"max_width": null,
|
582 |
+
"min_height": null,
|
583 |
+
"min_width": null,
|
584 |
+
"object_fit": null,
|
585 |
+
"object_position": null,
|
586 |
+
"order": null,
|
587 |
+
"overflow": null,
|
588 |
+
"overflow_x": null,
|
589 |
+
"overflow_y": null,
|
590 |
+
"padding": null,
|
591 |
+
"right": null,
|
592 |
+
"top": null,
|
593 |
+
"visibility": null,
|
594 |
+
"width": null
|
595 |
+
}
|
596 |
+
},
|
597 |
+
"9a3b710001334adc8684c2227e2b556b": {
|
598 |
+
"model_module": "@jupyter-widgets/controls",
|
599 |
+
"model_module_version": "1.5.0",
|
600 |
+
"model_name": "DescriptionStyleModel",
|
601 |
+
"state": {
|
602 |
+
"_model_module": "@jupyter-widgets/controls",
|
603 |
+
"_model_module_version": "1.5.0",
|
604 |
+
"_model_name": "DescriptionStyleModel",
|
605 |
+
"_view_count": null,
|
606 |
+
"_view_module": "@jupyter-widgets/base",
|
607 |
+
"_view_module_version": "1.2.0",
|
608 |
+
"_view_name": "StyleView",
|
609 |
+
"description_width": ""
|
610 |
+
}
|
611 |
+
},
|
612 |
+
"cb23ba857ca548e88967a0ef2d3f32e4": {
|
613 |
+
"model_module": "@jupyter-widgets/base",
|
614 |
+
"model_module_version": "1.2.0",
|
615 |
+
"model_name": "LayoutModel",
|
616 |
+
"state": {
|
617 |
+
"_model_module": "@jupyter-widgets/base",
|
618 |
+
"_model_module_version": "1.2.0",
|
619 |
+
"_model_name": "LayoutModel",
|
620 |
+
"_view_count": null,
|
621 |
+
"_view_module": "@jupyter-widgets/base",
|
622 |
+
"_view_module_version": "1.2.0",
|
623 |
+
"_view_name": "LayoutView",
|
624 |
+
"align_content": null,
|
625 |
+
"align_items": null,
|
626 |
+
"align_self": null,
|
627 |
+
"border": null,
|
628 |
+
"bottom": null,
|
629 |
+
"display": null,
|
630 |
+
"flex": null,
|
631 |
+
"flex_flow": null,
|
632 |
+
"grid_area": null,
|
633 |
+
"grid_auto_columns": null,
|
634 |
+
"grid_auto_flow": null,
|
635 |
+
"grid_auto_rows": null,
|
636 |
+
"grid_column": null,
|
637 |
+
"grid_gap": null,
|
638 |
+
"grid_row": null,
|
639 |
+
"grid_template_areas": null,
|
640 |
+
"grid_template_columns": null,
|
641 |
+
"grid_template_rows": null,
|
642 |
+
"height": null,
|
643 |
+
"justify_content": null,
|
644 |
+
"justify_items": null,
|
645 |
+
"left": null,
|
646 |
+
"margin": null,
|
647 |
+
"max_height": null,
|
648 |
+
"max_width": null,
|
649 |
+
"min_height": null,
|
650 |
+
"min_width": null,
|
651 |
+
"object_fit": null,
|
652 |
+
"object_position": null,
|
653 |
+
"order": null,
|
654 |
+
"overflow": null,
|
655 |
+
"overflow_x": null,
|
656 |
+
"overflow_y": null,
|
657 |
+
"padding": null,
|
658 |
+
"right": null,
|
659 |
+
"top": null,
|
660 |
+
"visibility": null,
|
661 |
+
"width": null
|
662 |
+
}
|
663 |
+
},
|
664 |
+
"d9fb30527f9a4bed9896bf89cbd4eb54": {
|
665 |
+
"model_module": "@jupyter-widgets/controls",
|
666 |
+
"model_module_version": "1.5.0",
|
667 |
+
"model_name": "ProgressStyleModel",
|
668 |
+
"state": {
|
669 |
+
"_model_module": "@jupyter-widgets/controls",
|
670 |
+
"_model_module_version": "1.5.0",
|
671 |
+
"_model_name": "ProgressStyleModel",
|
672 |
+
"_view_count": null,
|
673 |
+
"_view_module": "@jupyter-widgets/base",
|
674 |
+
"_view_module_version": "1.2.0",
|
675 |
+
"_view_name": "StyleView",
|
676 |
+
"bar_color": null,
|
677 |
+
"description_width": ""
|
678 |
+
}
|
679 |
+
},
|
680 |
+
"f8709807dedf4e349dd9d463db6abac7": {
|
681 |
+
"model_module": "@jupyter-widgets/controls",
|
682 |
+
"model_module_version": "1.5.0",
|
683 |
+
"model_name": "HTMLModel",
|
684 |
+
"state": {
|
685 |
+
"_dom_classes": [],
|
686 |
+
"_model_module": "@jupyter-widgets/controls",
|
687 |
+
"_model_module_version": "1.5.0",
|
688 |
+
"_model_name": "HTMLModel",
|
689 |
+
"_view_count": null,
|
690 |
+
"_view_module": "@jupyter-widgets/controls",
|
691 |
+
"_view_module_version": "1.5.0",
|
692 |
+
"_view_name": "HTMLView",
|
693 |
+
"description": "",
|
694 |
+
"description_tooltip": null,
|
695 |
+
"layout": "IPY_MODEL_cb23ba857ca548e88967a0ef2d3f32e4",
|
696 |
+
"placeholder": "",
|
697 |
+
"style": "IPY_MODEL_70331cb723934c37abd7a1815a969841",
|
698 |
+
"value": "Fetching 11 files: 100%"
|
699 |
+
}
|
700 |
+
},
|
701 |
+
"fd8b65aab251427bac9380d843ad02e1": {
|
702 |
+
"model_module": "@jupyter-widgets/base",
|
703 |
+
"model_module_version": "1.2.0",
|
704 |
+
"model_name": "LayoutModel",
|
705 |
+
"state": {
|
706 |
+
"_model_module": "@jupyter-widgets/base",
|
707 |
+
"_model_module_version": "1.2.0",
|
708 |
+
"_model_name": "LayoutModel",
|
709 |
+
"_view_count": null,
|
710 |
+
"_view_module": "@jupyter-widgets/base",
|
711 |
+
"_view_module_version": "1.2.0",
|
712 |
+
"_view_name": "LayoutView",
|
713 |
+
"align_content": null,
|
714 |
+
"align_items": null,
|
715 |
+
"align_self": null,
|
716 |
+
"border": null,
|
717 |
+
"bottom": null,
|
718 |
+
"display": null,
|
719 |
+
"flex": null,
|
720 |
+
"flex_flow": null,
|
721 |
+
"grid_area": null,
|
722 |
+
"grid_auto_columns": null,
|
723 |
+
"grid_auto_flow": null,
|
724 |
+
"grid_auto_rows": null,
|
725 |
+
"grid_column": null,
|
726 |
+
"grid_gap": null,
|
727 |
+
"grid_row": null,
|
728 |
+
"grid_template_areas": null,
|
729 |
+
"grid_template_columns": null,
|
730 |
+
"grid_template_rows": null,
|
731 |
+
"height": null,
|
732 |
+
"justify_content": null,
|
733 |
+
"justify_items": null,
|
734 |
+
"left": null,
|
735 |
+
"margin": null,
|
736 |
+
"max_height": null,
|
737 |
+
"max_width": null,
|
738 |
+
"min_height": null,
|
739 |
+
"min_width": null,
|
740 |
+
"object_fit": null,
|
741 |
+
"object_position": null,
|
742 |
+
"order": null,
|
743 |
+
"overflow": null,
|
744 |
+
"overflow_x": null,
|
745 |
+
"overflow_y": null,
|
746 |
+
"padding": null,
|
747 |
+
"right": null,
|
748 |
+
"top": null,
|
749 |
+
"visibility": null,
|
750 |
+
"width": null
|
751 |
+
}
|
752 |
+
}
|
753 |
+
}
|
754 |
+
}
|
755 |
+
},
|
756 |
+
"nbformat": 4,
|
757 |
+
"nbformat_minor": 0
|
758 |
+
}
|
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""🎬 Keras Video Classification CNN-RNN model
|
3 |
+
|
4 |
+
Spaces for showing the model usage.
|
5 |
+
|
6 |
+
Author:
|
7 |
+
- Thomas Chaigneau @ChainYo
|
8 |
+
"""
|
9 |
+
import os
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from tensorflow import keras
|
16 |
+
|
17 |
+
from tensorflow_docs.vis import embed
|
18 |
+
|
19 |
+
from huggingface_hub import from_pretrained_keras
|
20 |
+
|
21 |
+
# Kích thước ảnh đầu vào và số lượng đặc trưng
|
22 |
+
IMG_SIZE = 224
|
23 |
+
NUM_FEATURES = 2048
|
24 |
+
|
25 |
+
# Tải mô hình CNN-RNN từ HuggingFace
|
26 |
+
model = from_pretrained_keras("keras-io/video-classification-cnn-rnn")
|
27 |
+
|
28 |
+
# Tạo danh sách video ví dụ từ thư mục Samples
|
29 |
+
samples = []
|
30 |
+
for file in os.listdir("Samples"):
|
31 |
+
tag = file.split("_")[1]
|
32 |
+
samples.append([f"samples/{file}"])
|
33 |
+
|
34 |
+
# Cắt phần hình vuông ở trung tâm frame
|
35 |
+
def crop_center_square(frame):
|
36 |
+
y, x = frame.shape[0:2]
|
37 |
+
min_dim = min(y, x)
|
38 |
+
start_x = (x // 2) - (min_dim // 2)
|
39 |
+
start_y = (y // 2) - (min_dim // 2)
|
40 |
+
return frame[start_y : start_y + min_dim, start_x : start_x + min_dim]
|
41 |
+
|
42 |
+
# Đọc video và xử lý từng frame
|
43 |
+
def load_video(path, max_frames=0, resize=(IMG_SIZE, IMG_SIZE)):
|
44 |
+
cap = cv2.VideoCapture(path)
|
45 |
+
frames = []
|
46 |
+
try:
|
47 |
+
while True:
|
48 |
+
ret, frame = cap.read()
|
49 |
+
if not ret:
|
50 |
+
break
|
51 |
+
frame = crop_center_square(frame)
|
52 |
+
frame = cv2.resize(frame, resize)
|
53 |
+
frame = frame[:, :, [2, 1, 0]]
|
54 |
+
frames.append(frame)
|
55 |
+
|
56 |
+
if len(frames) == max_frames:
|
57 |
+
break
|
58 |
+
finally:
|
59 |
+
cap.release()
|
60 |
+
return np.array(frames)
|
61 |
+
|
62 |
+
# Xây dựng mô hình trích xuất đặc trưng (InceptionV3)
|
63 |
+
def build_feature_extractor():
|
64 |
+
feature_extractor = keras.applications.InceptionV3(
|
65 |
+
weights="imagenet",
|
66 |
+
include_top=False,
|
67 |
+
pooling="avg",
|
68 |
+
input_shape=(IMG_SIZE, IMG_SIZE, 3),
|
69 |
+
)
|
70 |
+
preprocess_input = keras.applications.inception_v3.preprocess_input
|
71 |
+
|
72 |
+
inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3))
|
73 |
+
preprocessed = preprocess_input(inputs)
|
74 |
+
|
75 |
+
outputs = feature_extractor(preprocessed)
|
76 |
+
return keras.Model(inputs, outputs, name="feature_extractor")
|
77 |
+
|
78 |
+
# Tạo feature extractor 1 lần
|
79 |
+
feature_extractor = build_feature_extractor()
|
80 |
+
|
81 |
+
# Trích xuất đặc trưng cho từng frame của video
|
82 |
+
def prepare_video(frames, max_seq_length: int = 20):
|
83 |
+
frames = frames[None, ...]
|
84 |
+
frame_mask = np.zeros(shape=(1, max_seq_length,), dtype="bool")
|
85 |
+
frame_features = np.zeros(shape=(1, max_seq_length, NUM_FEATURES), dtype="float32")
|
86 |
+
|
87 |
+
for i, batch in enumerate(frames):
|
88 |
+
video_length = batch.shape[0]
|
89 |
+
length = min(max_seq_length, video_length)
|
90 |
+
for j in range(length):
|
91 |
+
frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :])
|
92 |
+
frame_mask[i, :length] = 1 # 1 = not masked, 0 = masked
|
93 |
+
|
94 |
+
return frame_features, frame_mask
|
95 |
+
|
96 |
+
# Dự đoán hành động từ video
|
97 |
+
def sequence_prediction(path):
|
98 |
+
class_vocab = ["CricketShot", "PlayingCello", "Punch", "ShavingBeard", "TennisSwing"]
|
99 |
+
|
100 |
+
frames = load_video(path)
|
101 |
+
frame_features, frame_mask = prepare_video(frames)
|
102 |
+
probabilities = model.predict([frame_features, frame_mask])[0]
|
103 |
+
|
104 |
+
preds = {}
|
105 |
+
for i in np.argsort(probabilities)[::-1]:
|
106 |
+
preds[class_vocab[i]] = float(probabilities[i])
|
107 |
+
return preds
|
108 |
+
|
109 |
+
# HTML mô tả bên dưới app
|
110 |
+
article = article = "<div style='text-align: center;'><a href='https://github.com/ChainYo' target='_blank'>Space by Thomas Chaigneau</a><br><a href='https://keras.io/examples/vision/video_classification/' target='_blank'>Keras example by Sayak Paul</a></div>"
|
111 |
+
|
112 |
+
# Tạo giao diện Gradio
|
113 |
+
app = gr.Interface(
|
114 |
+
fn=sequence_prediction,
|
115 |
+
inputs=[gr.Video(label="Video")],
|
116 |
+
outputs=gr.Label(label="Prediction"),
|
117 |
+
title="Keras Video Classification with CNN-RNN",
|
118 |
+
description="Video classification demo using CNN-RNN based model.",
|
119 |
+
article=article,
|
120 |
+
examples=samples
|
121 |
+
)
|
122 |
+
|
123 |
+
# Khởi chạy ứng dụng
|
124 |
+
app.launch()
|
125 |
+
|
126 |
+
|
gitattributes.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python-headless
|
2 |
+
tensorflow
|
3 |
+
git+https://github.com/tensorflow/docs
|