Spaces:
Build error
Build error
fix: structruring
Browse files- app.py +1 -1
- nf4.py +4 -4
- pipeline_hidream_image.py +686 -479
- pipeline_output.py +21 -0
- transformer_hidream_image.py +526 -0
app.py
CHANGED
@@ -5,7 +5,7 @@ import torch
|
|
5 |
import logging
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
8 |
-
from
|
9 |
import subprocess
|
10 |
|
11 |
try:
|
|
|
5 |
import logging
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
8 |
+
from pipeline_hidream_image import HiDreamImagePipeline
|
9 |
import subprocess
|
10 |
|
11 |
try:
|
nf4.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import torch
|
2 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
3 |
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
|
9 |
|
10 |
MODEL_PREFIX = "azaneko"
|
|
|
1 |
import torch
|
2 |
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
3 |
|
4 |
+
from pipeline_hidream_image import HiDreamImagePipeline
|
5 |
+
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
6 |
+
from schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
7 |
+
from schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
8 |
|
9 |
|
10 |
MODEL_PREFIX = "azaneko"
|
pipeline_hidream_image.py
CHANGED
@@ -1,526 +1,733 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
import torch.nn as nn
|
5 |
import einops
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
from
|
17 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
@maybe_allow_in_graph
|
35 |
-
class HiDreamImageSingleTransformerBlock(nn.Module):
|
36 |
def __init__(
|
37 |
self,
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
):
|
44 |
super().__init__()
|
45 |
-
|
46 |
-
self.
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# 1. Attention
|
54 |
-
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
55 |
-
self.attn1 = HiDreamAttention(
|
56 |
-
query_dim=dim,
|
57 |
-
heads=num_attention_heads,
|
58 |
-
dim_head=attention_head_dim,
|
59 |
-
processor = HiDreamAttnProcessor_flashattn(),
|
60 |
-
single = True
|
61 |
)
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
65 |
-
if num_routed_experts > 0:
|
66 |
-
self.ff_i = MOEFeedForwardSwiGLU(
|
67 |
-
dim = dim,
|
68 |
-
hidden_dim = 4 * dim,
|
69 |
-
num_routed_experts = num_routed_experts,
|
70 |
-
num_activated_experts = num_activated_experts,
|
71 |
-
)
|
72 |
-
else:
|
73 |
-
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
74 |
-
|
75 |
-
def forward(
|
76 |
self,
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
self,
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
114 |
):
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
self.attn1 = HiDreamAttention(
|
128 |
-
query_dim=dim,
|
129 |
-
heads=num_attention_heads,
|
130 |
-
dim_head=attention_head_dim,
|
131 |
-
processor = HiDreamAttnProcessor_flashattn(),
|
132 |
-
single = False
|
133 |
)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
if
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
num_activated_experts = num_activated_experts,
|
143 |
)
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
def
|
150 |
self,
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
)
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
image_tokens_masks,
|
171 |
-
norm_text_tokens,
|
172 |
-
rope = rope,
|
173 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
189 |
|
190 |
-
|
191 |
-
class HiDreamImageBlock(nn.Module):
|
192 |
-
def __init__(
|
193 |
self,
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
):
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
)
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
self,
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
self,
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
text_emb_dim: int = 2048,
|
248 |
-
num_routed_experts: int = 4,
|
249 |
-
num_activated_experts: int = 2,
|
250 |
-
axes_dims_rope: Tuple[int, int] = (32, 32),
|
251 |
-
max_resolution: Tuple[int, int] = (128, 128),
|
252 |
-
llama_layers: List[int] = None,
|
253 |
):
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
self.
|
258 |
-
|
259 |
-
self.t_embedder = TimestepEmbed(self.inner_dim)
|
260 |
-
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim)
|
261 |
-
self.x_embedder = PatchEmbed(
|
262 |
-
patch_size = patch_size,
|
263 |
-
in_channels = in_channels,
|
264 |
-
out_channels = self.inner_dim,
|
265 |
-
)
|
266 |
-
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
267 |
-
|
268 |
-
self.double_stream_blocks = nn.ModuleList(
|
269 |
-
[
|
270 |
-
HiDreamImageBlock(
|
271 |
-
dim = self.inner_dim,
|
272 |
-
num_attention_heads = self.config.num_attention_heads,
|
273 |
-
attention_head_dim = self.config.attention_head_dim,
|
274 |
-
num_routed_experts = num_routed_experts,
|
275 |
-
num_activated_experts = num_activated_experts,
|
276 |
-
block_type = BlockType.TransformerBlock
|
277 |
-
)
|
278 |
-
for i in range(self.config.num_layers)
|
279 |
-
]
|
280 |
-
)
|
281 |
|
282 |
-
|
283 |
-
[
|
284 |
-
HiDreamImageBlock(
|
285 |
-
dim = self.inner_dim,
|
286 |
-
num_attention_heads = self.config.num_attention_heads,
|
287 |
-
attention_head_dim = self.config.attention_head_dim,
|
288 |
-
num_routed_experts = num_routed_experts,
|
289 |
-
num_activated_experts = num_activated_experts,
|
290 |
-
block_type = BlockType.SingleTransformerBlock
|
291 |
-
)
|
292 |
-
for i in range(self.config.num_single_layers)
|
293 |
-
]
|
294 |
-
)
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
299 |
-
caption_projection = []
|
300 |
-
for caption_channel in caption_channels:
|
301 |
-
caption_projection.append(TextProjection(in_features = caption_channel, hidden_size = self.inner_dim))
|
302 |
-
self.caption_projection = nn.ModuleList(caption_projection)
|
303 |
-
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
304 |
-
|
305 |
-
self.gradient_checkpointing = False
|
306 |
-
|
307 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
308 |
-
if hasattr(module, "gradient_checkpointing"):
|
309 |
-
module.gradient_checkpointing = value
|
310 |
-
|
311 |
-
def expand_timesteps(self, timesteps, batch_size, device):
|
312 |
-
if not torch.is_tensor(timesteps):
|
313 |
-
is_mps = device.type == "mps"
|
314 |
-
if isinstance(timesteps, float):
|
315 |
-
dtype = torch.float32 if is_mps else torch.float64
|
316 |
-
else:
|
317 |
-
dtype = torch.int32 if is_mps else torch.int64
|
318 |
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
319 |
-
elif len(timesteps.shape) == 0:
|
320 |
-
timesteps = timesteps[None].to(device)
|
321 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
322 |
-
timesteps = timesteps.expand(batch_size)
|
323 |
-
return timesteps
|
324 |
-
|
325 |
-
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
326 |
-
if is_training:
|
327 |
-
x = einops.rearrange(x, 'B S (p1 p2 C) -> B C S (p1 p2)', p1=self.config.patch_size, p2=self.config.patch_size)
|
328 |
else:
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
def
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
350 |
-
|
351 |
-
if img_sizes is not None:
|
352 |
-
for i, img_size in enumerate(img_sizes):
|
353 |
-
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
354 |
-
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
355 |
-
elif isinstance(x, torch.Tensor):
|
356 |
-
pH, pW = x.shape[-2] // self.config.patch_size, x.shape[-1] // self.config.patch_size
|
357 |
-
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.config.patch_size, p2=self.config.patch_size)
|
358 |
-
img_sizes = [[pH, pW]] * B
|
359 |
-
x_masks = None
|
360 |
-
else:
|
361 |
-
raise NotImplementedError
|
362 |
-
return x, x_masks, img_sizes
|
363 |
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
365 |
self,
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
return_dict: bool = True,
|
|
|
|
|
|
|
|
|
374 |
):
|
375 |
-
|
376 |
-
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
else:
|
379 |
-
|
380 |
|
381 |
-
|
382 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
383 |
-
scale_lora_layers(self, lora_scale)
|
384 |
-
else:
|
385 |
-
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
386 |
-
logger.warning(
|
387 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
388 |
-
)
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
hidden_states_type = hidden_states.dtype
|
393 |
-
|
394 |
-
# 0. time
|
395 |
-
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
396 |
-
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
397 |
-
p_embedder = self.p_embedder(pooled_embeds)
|
398 |
-
adaln_input = timesteps + p_embedder
|
399 |
-
|
400 |
-
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
401 |
-
if image_tokens_masks is None:
|
402 |
-
pH, pW = img_sizes[0]
|
403 |
-
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
404 |
-
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
405 |
-
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
406 |
-
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
407 |
-
hidden_states = self.x_embedder(hidden_states)
|
408 |
-
|
409 |
-
T5_encoder_hidden_states = encoder_hidden_states[0]
|
410 |
-
encoder_hidden_states = encoder_hidden_states[-1]
|
411 |
-
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
412 |
-
|
413 |
-
if self.caption_projection is not None:
|
414 |
-
new_encoder_hidden_states = []
|
415 |
-
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
416 |
-
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
417 |
-
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
418 |
-
new_encoder_hidden_states.append(enc_hidden_state)
|
419 |
-
encoder_hidden_states = new_encoder_hidden_states
|
420 |
-
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
421 |
-
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
422 |
-
encoder_hidden_states.append(T5_encoder_hidden_states)
|
423 |
-
|
424 |
-
txt_ids = torch.zeros(
|
425 |
-
batch_size,
|
426 |
-
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
427 |
-
3,
|
428 |
-
device=img_ids.device, dtype=img_ids.dtype
|
429 |
)
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
)
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
)
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
if not return_dict:
|
524 |
-
return (
|
525 |
-
|
526 |
-
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
import math
|
|
|
4 |
import einops
|
5 |
+
import torch
|
6 |
+
from transformers import (
|
7 |
+
CLIPTextModelWithProjection,
|
8 |
+
CLIPTokenizer,
|
9 |
+
T5EncoderModel,
|
10 |
+
T5Tokenizer,
|
11 |
+
LlamaForCausalLM,
|
12 |
+
PreTrainedTokenizerFast
|
13 |
+
)
|
14 |
+
|
15 |
+
from diffusers.image_processor import VaeImageProcessor
|
16 |
+
from diffusers.loaders import FromSingleFileMixin
|
17 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
18 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
19 |
+
from diffusers.utils import (
|
20 |
+
USE_PEFT_BACKEND,
|
21 |
+
is_torch_xla_available,
|
22 |
+
logging,
|
23 |
+
)
|
24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
25 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
26 |
+
from pipeline_output import HiDreamImagePipelineOutput
|
27 |
+
from transformer_hidream_image import HiDreamImageTransformer2DModel
|
28 |
+
from schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
29 |
+
|
30 |
+
if is_torch_xla_available():
|
31 |
+
import torch_xla.core.xla_model as xm
|
32 |
+
|
33 |
+
XLA_AVAILABLE = True
|
34 |
+
else:
|
35 |
+
XLA_AVAILABLE = False
|
36 |
|
37 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
|
39 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
40 |
+
def calculate_shift(
|
41 |
+
image_seq_len,
|
42 |
+
base_seq_len: int = 256,
|
43 |
+
max_seq_len: int = 4096,
|
44 |
+
base_shift: float = 0.5,
|
45 |
+
max_shift: float = 1.15,
|
46 |
+
):
|
47 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
48 |
+
b = base_shift - m * base_seq_len
|
49 |
+
mu = image_seq_len * m + b
|
50 |
+
return mu
|
51 |
+
|
52 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
53 |
+
def retrieve_timesteps(
|
54 |
+
scheduler,
|
55 |
+
num_inference_steps: Optional[int] = None,
|
56 |
+
device: Optional[Union[str, torch.device]] = None,
|
57 |
+
timesteps: Optional[List[int]] = None,
|
58 |
+
sigmas: Optional[List[float]] = None,
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
r"""
|
62 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
63 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
scheduler (`SchedulerMixin`):
|
67 |
+
The scheduler to get timesteps from.
|
68 |
+
num_inference_steps (`int`):
|
69 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
70 |
+
must be `None`.
|
71 |
+
device (`str` or `torch.device`, *optional*):
|
72 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
73 |
+
timesteps (`List[int]`, *optional*):
|
74 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
75 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
76 |
+
sigmas (`List[float]`, *optional*):
|
77 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
78 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
82 |
+
second element is the number of inference steps.
|
83 |
+
"""
|
84 |
+
if timesteps is not None and sigmas is not None:
|
85 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
86 |
+
if timesteps is not None:
|
87 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
88 |
+
if not accepts_timesteps:
|
89 |
+
raise ValueError(
|
90 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
91 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
92 |
+
)
|
93 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
94 |
+
timesteps = scheduler.timesteps
|
95 |
+
num_inference_steps = len(timesteps)
|
96 |
+
elif sigmas is not None:
|
97 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
98 |
+
if not accept_sigmas:
|
99 |
+
raise ValueError(
|
100 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
101 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
102 |
+
)
|
103 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
104 |
+
timesteps = scheduler.timesteps
|
105 |
+
num_inference_steps = len(timesteps)
|
106 |
+
else:
|
107 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
108 |
+
timesteps = scheduler.timesteps
|
109 |
+
return timesteps, num_inference_steps
|
110 |
+
|
111 |
+
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
112 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
113 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
114 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
115 |
|
|
|
|
|
116 |
def __init__(
|
117 |
self,
|
118 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
119 |
+
vae: AutoencoderKL,
|
120 |
+
text_encoder: CLIPTextModelWithProjection,
|
121 |
+
tokenizer: CLIPTokenizer,
|
122 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
123 |
+
tokenizer_2: CLIPTokenizer,
|
124 |
+
text_encoder_3: T5EncoderModel,
|
125 |
+
tokenizer_3: T5Tokenizer,
|
126 |
+
text_encoder_4: LlamaForCausalLM,
|
127 |
+
tokenizer_4: PreTrainedTokenizerFast,
|
128 |
):
|
129 |
super().__init__()
|
130 |
+
|
131 |
+
self.register_modules(
|
132 |
+
vae=vae,
|
133 |
+
text_encoder=text_encoder,
|
134 |
+
text_encoder_2=text_encoder_2,
|
135 |
+
text_encoder_3=text_encoder_3,
|
136 |
+
text_encoder_4=text_encoder_4,
|
137 |
+
tokenizer=tokenizer,
|
138 |
+
tokenizer_2=tokenizer_2,
|
139 |
+
tokenizer_3=tokenizer_3,
|
140 |
+
tokenizer_4=tokenizer_4,
|
141 |
+
scheduler=scheduler,
|
142 |
)
|
143 |
+
self.vae_scale_factor = (
|
144 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
)
|
146 |
+
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
147 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
148 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
149 |
+
self.default_sample_size = 128
|
150 |
+
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
151 |
|
152 |
+
def _get_t5_prompt_embeds(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
self,
|
154 |
+
prompt: Union[str, List[str]] = None,
|
155 |
+
num_images_per_prompt: int = 1,
|
156 |
+
max_sequence_length: int = 128,
|
157 |
+
device: Optional[torch.device] = None,
|
158 |
+
dtype: Optional[torch.dtype] = None,
|
159 |
+
):
|
160 |
+
device = device or self._execution_device
|
161 |
+
dtype = dtype or self.text_encoder_3.dtype
|
162 |
+
|
163 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
164 |
+
batch_size = len(prompt)
|
165 |
+
|
166 |
+
text_inputs = self.tokenizer_3(
|
167 |
+
prompt,
|
168 |
+
padding="max_length",
|
169 |
+
max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
|
170 |
+
truncation=True,
|
171 |
+
add_special_tokens=True,
|
172 |
+
return_tensors="pt",
|
173 |
)
|
174 |
+
text_input_ids = text_inputs.input_ids
|
175 |
+
attention_mask = text_inputs.attention_mask
|
176 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
177 |
+
|
178 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
179 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1])
|
180 |
+
logger.warning(
|
181 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
182 |
+
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
183 |
+
)
|
184 |
+
|
185 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0]
|
186 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
187 |
+
_, seq_len, _ = prompt_embeds.shape
|
188 |
+
|
189 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
190 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
191 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
192 |
+
return prompt_embeds
|
193 |
+
|
194 |
+
def _get_clip_prompt_embeds(
|
195 |
self,
|
196 |
+
tokenizer,
|
197 |
+
text_encoder,
|
198 |
+
prompt: Union[str, List[str]],
|
199 |
+
num_images_per_prompt: int = 1,
|
200 |
+
max_sequence_length: int = 128,
|
201 |
+
device: Optional[torch.device] = None,
|
202 |
+
dtype: Optional[torch.dtype] = None,
|
203 |
):
|
204 |
+
device = device or self._execution_device
|
205 |
+
dtype = dtype or text_encoder.dtype
|
206 |
+
|
207 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
208 |
+
batch_size = len(prompt)
|
209 |
+
|
210 |
+
text_inputs = tokenizer(
|
211 |
+
prompt,
|
212 |
+
padding="max_length",
|
213 |
+
max_length=min(max_sequence_length, 218),
|
214 |
+
truncation=True,
|
215 |
+
return_tensors="pt",
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
)
|
217 |
|
218 |
+
text_input_ids = text_inputs.input_ids
|
219 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
220 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
221 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
222 |
+
logger.warning(
|
223 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
224 |
+
f" {218} tokens: {removed_text}"
|
|
|
225 |
)
|
226 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
227 |
+
|
228 |
+
# Use pooled output of CLIPTextModel
|
229 |
+
prompt_embeds = prompt_embeds[0]
|
230 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
231 |
+
|
232 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
233 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
234 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
235 |
+
|
236 |
+
return prompt_embeds
|
237 |
|
238 |
+
def _get_llama3_prompt_embeds(
|
239 |
self,
|
240 |
+
prompt: Union[str, List[str]] = None,
|
241 |
+
num_images_per_prompt: int = 1,
|
242 |
+
max_sequence_length: int = 128,
|
243 |
+
device: Optional[torch.device] = None,
|
244 |
+
dtype: Optional[torch.dtype] = None,
|
245 |
+
):
|
246 |
+
device = device or self._execution_device
|
247 |
+
dtype = dtype or self.text_encoder_4.dtype
|
248 |
+
|
249 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
250 |
+
batch_size = len(prompt)
|
251 |
+
|
252 |
+
text_inputs = self.tokenizer_4(
|
253 |
+
prompt,
|
254 |
+
padding="max_length",
|
255 |
+
max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
|
256 |
+
truncation=True,
|
257 |
+
add_special_tokens=True,
|
258 |
+
return_tensors="pt",
|
|
|
|
|
|
|
259 |
)
|
260 |
+
text_input_ids = text_inputs.input_ids
|
261 |
+
attention_mask = text_inputs.attention_mask
|
262 |
+
untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids
|
263 |
+
|
264 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
265 |
+
removed_text = self.tokenizer_4.batch_decode(untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1])
|
266 |
+
logger.warning(
|
267 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
268 |
+
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
269 |
+
)
|
270 |
|
271 |
+
outputs = self.text_encoder_4(
|
272 |
+
text_input_ids.to(device),
|
273 |
+
attention_mask=attention_mask.to(device),
|
274 |
+
output_hidden_states=True,
|
275 |
+
output_attentions=True
|
276 |
+
)
|
277 |
+
|
278 |
+
prompt_embeds = outputs.hidden_states[1:]
|
279 |
+
prompt_embeds = torch.stack(prompt_embeds, dim=0)
|
280 |
+
_, _, seq_len, dim = prompt_embeds.shape
|
281 |
+
|
282 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
283 |
+
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
284 |
+
prompt_embeds = prompt_embeds.view(-1, batch_size * num_images_per_prompt, seq_len, dim)
|
285 |
+
return prompt_embeds
|
286 |
|
287 |
+
def encode_prompt(
|
|
|
|
|
288 |
self,
|
289 |
+
prompt: Union[str, List[str]],
|
290 |
+
prompt_2: Union[str, List[str]],
|
291 |
+
prompt_3: Union[str, List[str]],
|
292 |
+
prompt_4: Union[str, List[str]],
|
293 |
+
device: Optional[torch.device] = None,
|
294 |
+
dtype: Optional[torch.dtype] = None,
|
295 |
+
num_images_per_prompt: int = 1,
|
296 |
+
do_classifier_free_guidance: bool = True,
|
297 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
298 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
299 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
300 |
+
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
301 |
+
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
302 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
303 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
304 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
305 |
+
max_sequence_length: int = 128,
|
306 |
+
lora_scale: Optional[float] = None,
|
307 |
):
|
308 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
309 |
+
if prompt is not None:
|
310 |
+
batch_size = len(prompt)
|
311 |
+
else:
|
312 |
+
batch_size = prompt_embeds.shape[0]
|
313 |
+
|
314 |
+
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
315 |
+
prompt = prompt,
|
316 |
+
prompt_2 = prompt_2,
|
317 |
+
prompt_3 = prompt_3,
|
318 |
+
prompt_4 = prompt_4,
|
319 |
+
device = device,
|
320 |
+
dtype = dtype,
|
321 |
+
num_images_per_prompt = num_images_per_prompt,
|
322 |
+
prompt_embeds = prompt_embeds,
|
323 |
+
pooled_prompt_embeds = pooled_prompt_embeds,
|
324 |
+
max_sequence_length = max_sequence_length,
|
325 |
)
|
326 |
+
|
327 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
328 |
+
negative_prompt = negative_prompt or ""
|
329 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
330 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
331 |
+
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
332 |
+
|
333 |
+
# normalize str to list
|
334 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
335 |
+
negative_prompt_2 = (
|
336 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
337 |
+
)
|
338 |
+
negative_prompt_3 = (
|
339 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
340 |
+
)
|
341 |
+
negative_prompt_4 = (
|
342 |
+
batch_size * [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4
|
343 |
+
)
|
344 |
+
|
345 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
346 |
+
raise TypeError(
|
347 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
348 |
+
f" {type(prompt)}."
|
349 |
+
)
|
350 |
+
elif batch_size != len(negative_prompt):
|
351 |
+
raise ValueError(
|
352 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
353 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
354 |
+
" the batch size of `prompt`."
|
355 |
+
)
|
356 |
+
|
357 |
+
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
358 |
+
prompt = negative_prompt,
|
359 |
+
prompt_2 = negative_prompt_2,
|
360 |
+
prompt_3 = negative_prompt_3,
|
361 |
+
prompt_4 = negative_prompt_4,
|
362 |
+
device = device,
|
363 |
+
dtype = dtype,
|
364 |
+
num_images_per_prompt = num_images_per_prompt,
|
365 |
+
prompt_embeds = negative_prompt_embeds,
|
366 |
+
pooled_prompt_embeds = negative_pooled_prompt_embeds,
|
367 |
+
max_sequence_length = max_sequence_length,
|
368 |
+
)
|
369 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
370 |
+
|
371 |
+
def _encode_prompt(
|
372 |
self,
|
373 |
+
prompt: Union[str, List[str]],
|
374 |
+
prompt_2: Union[str, List[str]],
|
375 |
+
prompt_3: Union[str, List[str]],
|
376 |
+
prompt_4: Union[str, List[str]],
|
377 |
+
device: Optional[torch.device] = None,
|
378 |
+
dtype: Optional[torch.dtype] = None,
|
379 |
+
num_images_per_prompt: int = 1,
|
380 |
+
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
381 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
382 |
+
max_sequence_length: int = 128,
|
383 |
+
):
|
384 |
+
device = device or self._execution_device
|
385 |
+
|
386 |
+
if prompt_embeds is None:
|
387 |
+
prompt_2 = prompt_2 or prompt
|
388 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
389 |
+
|
390 |
+
prompt_3 = prompt_3 or prompt
|
391 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
392 |
+
|
393 |
+
prompt_4 = prompt_4 or prompt
|
394 |
+
prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4
|
395 |
+
|
396 |
+
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
397 |
+
self.tokenizer,
|
398 |
+
self.text_encoder,
|
399 |
+
prompt = prompt,
|
400 |
+
num_images_per_prompt = num_images_per_prompt,
|
401 |
+
max_sequence_length = max_sequence_length,
|
402 |
+
device = device,
|
403 |
+
dtype = dtype,
|
404 |
+
)
|
405 |
|
406 |
+
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
407 |
+
self.tokenizer_2,
|
408 |
+
self.text_encoder_2,
|
409 |
+
prompt = prompt_2,
|
410 |
+
num_images_per_prompt = num_images_per_prompt,
|
411 |
+
max_sequence_length = max_sequence_length,
|
412 |
+
device = device,
|
413 |
+
dtype = dtype,
|
414 |
+
)
|
415 |
|
416 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)
|
417 |
+
|
418 |
+
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
419 |
+
prompt = prompt_3,
|
420 |
+
num_images_per_prompt = num_images_per_prompt,
|
421 |
+
max_sequence_length = max_sequence_length,
|
422 |
+
device = device,
|
423 |
+
dtype = dtype
|
424 |
+
)
|
425 |
+
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
426 |
+
prompt = prompt_4,
|
427 |
+
num_images_per_prompt = num_images_per_prompt,
|
428 |
+
max_sequence_length = max_sequence_length,
|
429 |
+
device = device,
|
430 |
+
dtype = dtype
|
431 |
+
)
|
432 |
+
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
433 |
+
|
434 |
+
return prompt_embeds, pooled_prompt_embeds
|
435 |
+
|
436 |
+
def enable_vae_slicing(self):
|
437 |
+
r"""
|
438 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
439 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
440 |
+
"""
|
441 |
+
self.vae.enable_slicing()
|
442 |
+
|
443 |
+
def disable_vae_slicing(self):
|
444 |
+
r"""
|
445 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
446 |
+
computing decoding in one step.
|
447 |
+
"""
|
448 |
+
self.vae.disable_slicing()
|
449 |
+
|
450 |
+
def enable_vae_tiling(self):
|
451 |
+
r"""
|
452 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
453 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
454 |
+
processing larger images.
|
455 |
+
"""
|
456 |
+
self.vae.enable_tiling()
|
457 |
+
|
458 |
+
def disable_vae_tiling(self):
|
459 |
+
r"""
|
460 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
461 |
+
computing decoding in one step.
|
462 |
+
"""
|
463 |
+
self.vae.disable_tiling()
|
464 |
+
|
465 |
+
def prepare_latents(
|
466 |
self,
|
467 |
+
batch_size,
|
468 |
+
num_channels_latents,
|
469 |
+
height,
|
470 |
+
width,
|
471 |
+
dtype,
|
472 |
+
device,
|
473 |
+
generator,
|
474 |
+
latents=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
):
|
476 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
477 |
+
# latent height and width to be divisible by 2.
|
478 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
479 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
481 |
+
shape = (batch_size, num_channels_latents, height, width)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
|
483 |
+
if latents is None:
|
484 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
else:
|
486 |
+
if latents.shape != shape:
|
487 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
488 |
+
latents = latents.to(device)
|
489 |
+
return latents
|
490 |
+
|
491 |
+
@property
|
492 |
+
def guidance_scale(self):
|
493 |
+
return self._guidance_scale
|
494 |
+
|
495 |
+
@property
|
496 |
+
def do_classifier_free_guidance(self):
|
497 |
+
return self._guidance_scale > 1
|
498 |
+
|
499 |
+
@property
|
500 |
+
def joint_attention_kwargs(self):
|
501 |
+
return self._joint_attention_kwargs
|
502 |
+
|
503 |
+
@property
|
504 |
+
def num_timesteps(self):
|
505 |
+
return self._num_timesteps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
506 |
|
507 |
+
@property
|
508 |
+
def interrupt(self):
|
509 |
+
return self._interrupt
|
510 |
+
|
511 |
+
@torch.no_grad()
|
512 |
+
def __call__(
|
513 |
self,
|
514 |
+
prompt: Union[str, List[str]] = None,
|
515 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
516 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
517 |
+
prompt_4: Optional[Union[str, List[str]]] = None,
|
518 |
+
height: Optional[int] = None,
|
519 |
+
width: Optional[int] = None,
|
520 |
+
num_inference_steps: int = 50,
|
521 |
+
sigmas: Optional[List[float]] = None,
|
522 |
+
guidance_scale: float = 5.0,
|
523 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
524 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
525 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
526 |
+
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
527 |
+
num_images_per_prompt: Optional[int] = 1,
|
528 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
529 |
+
latents: Optional[torch.FloatTensor] = None,
|
530 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
531 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
532 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
533 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
534 |
+
output_type: Optional[str] = "pil",
|
535 |
return_dict: bool = True,
|
536 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
537 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
538 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
539 |
+
max_sequence_length: int = 128,
|
540 |
):
|
541 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
542 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
543 |
+
|
544 |
+
division = self.vae_scale_factor * 2
|
545 |
+
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
546 |
+
scale = S_max / (width * height)
|
547 |
+
scale = math.sqrt(scale)
|
548 |
+
width, height = int(width * scale // division * division), int(height * scale // division * division)
|
549 |
+
|
550 |
+
self._guidance_scale = guidance_scale
|
551 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
552 |
+
self._interrupt = False
|
553 |
+
|
554 |
+
# 2. Define call parameters
|
555 |
+
if prompt is not None and isinstance(prompt, str):
|
556 |
+
batch_size = 1
|
557 |
+
elif prompt is not None and isinstance(prompt, list):
|
558 |
+
batch_size = len(prompt)
|
559 |
else:
|
560 |
+
batch_size = prompt_embeds.shape[0]
|
561 |
|
562 |
+
device = self._execution_device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
|
564 |
+
lora_scale = (
|
565 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
566 |
)
|
567 |
+
(
|
568 |
+
prompt_embeds,
|
569 |
+
negative_prompt_embeds,
|
570 |
+
pooled_prompt_embeds,
|
571 |
+
negative_pooled_prompt_embeds,
|
572 |
+
) = self.encode_prompt(
|
573 |
+
prompt=prompt,
|
574 |
+
prompt_2=prompt_2,
|
575 |
+
prompt_3=prompt_3,
|
576 |
+
prompt_4=prompt_4,
|
577 |
+
negative_prompt=negative_prompt,
|
578 |
+
negative_prompt_2=negative_prompt_2,
|
579 |
+
negative_prompt_3=negative_prompt_3,
|
580 |
+
negative_prompt_4=negative_prompt_4,
|
581 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
582 |
+
prompt_embeds=prompt_embeds,
|
583 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
584 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
585 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
586 |
+
device=device,
|
587 |
+
num_images_per_prompt=num_images_per_prompt,
|
588 |
+
max_sequence_length=max_sequence_length,
|
589 |
+
lora_scale=lora_scale,
|
590 |
+
)
|
591 |
+
|
592 |
+
if self.do_classifier_free_guidance:
|
593 |
+
prompt_embeds_arr = []
|
594 |
+
for n, p in zip(negative_prompt_embeds, prompt_embeds):
|
595 |
+
if len(n.shape) == 3:
|
596 |
+
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
597 |
+
else:
|
598 |
+
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
599 |
+
prompt_embeds = prompt_embeds_arr
|
600 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
601 |
+
|
602 |
+
# 4. Prepare latent variables
|
603 |
+
num_channels_latents = self.transformer.config.in_channels
|
604 |
+
latents = self.prepare_latents(
|
605 |
+
batch_size * num_images_per_prompt,
|
606 |
+
num_channels_latents,
|
607 |
+
height,
|
608 |
+
width,
|
609 |
+
pooled_prompt_embeds.dtype,
|
610 |
+
device,
|
611 |
+
generator,
|
612 |
+
latents,
|
613 |
+
)
|
614 |
+
|
615 |
+
if latents.shape[-2] != latents.shape[-1]:
|
616 |
+
B, C, H, W = latents.shape
|
617 |
+
pH, pW = H // self.transformer.config.patch_size, W // self.transformer.config.patch_size
|
618 |
+
|
619 |
+
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
620 |
+
img_ids = torch.zeros(pH, pW, 3)
|
621 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
|
622 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
|
623 |
+
img_ids = img_ids.reshape(pH * pW, -1)
|
624 |
+
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
625 |
+
img_ids_pad[:pH*pW, :] = img_ids
|
626 |
+
|
627 |
+
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
628 |
+
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
629 |
+
if self.do_classifier_free_guidance:
|
630 |
+
img_sizes = img_sizes.repeat(2 * B, 1)
|
631 |
+
img_ids = img_ids.repeat(2 * B, 1, 1)
|
632 |
+
else:
|
633 |
+
img_sizes = img_ids = None
|
634 |
+
|
635 |
+
# 5. Prepare timesteps
|
636 |
+
mu = calculate_shift(self.transformer.max_seq)
|
637 |
+
scheduler_kwargs = {"mu": mu}
|
638 |
+
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
639 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device, shift=math.exp(mu))
|
640 |
+
timesteps = self.scheduler.timesteps
|
641 |
+
else:
|
642 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
643 |
+
self.scheduler,
|
644 |
+
num_inference_steps,
|
645 |
+
device,
|
646 |
+
sigmas=sigmas,
|
647 |
+
**scheduler_kwargs,
|
648 |
)
|
649 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
650 |
+
self._num_timesteps = len(timesteps)
|
651 |
+
|
652 |
+
# 6. Denoising loop
|
653 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
654 |
+
for i, t in enumerate(timesteps):
|
655 |
+
if self.interrupt:
|
656 |
+
continue
|
657 |
+
|
658 |
+
# expand the latents if we are doing classifier free guidance
|
659 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
660 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
661 |
+
timestep = t.expand(latent_model_input.shape[0])
|
662 |
+
|
663 |
+
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
|
664 |
+
B, C, H, W = latent_model_input.shape
|
665 |
+
patch_size = self.transformer.config.patch_size
|
666 |
+
pH, pW = H // patch_size, W // patch_size
|
667 |
+
out = torch.zeros(
|
668 |
+
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
669 |
+
dtype=latent_model_input.dtype,
|
670 |
+
device=latent_model_input.device
|
671 |
+
)
|
672 |
+
latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size)
|
673 |
+
out[:, :, 0:pH*pW] = latent_model_input
|
674 |
+
latent_model_input = out
|
675 |
+
|
676 |
+
noise_pred = self.transformer(
|
677 |
+
hidden_states = latent_model_input,
|
678 |
+
timesteps = timestep,
|
679 |
+
encoder_hidden_states = prompt_embeds,
|
680 |
+
pooled_embeds = pooled_prompt_embeds,
|
681 |
+
img_sizes = img_sizes,
|
682 |
+
img_ids = img_ids,
|
683 |
+
return_dict = False,
|
684 |
+
)[0]
|
685 |
+
noise_pred = -noise_pred
|
686 |
+
|
687 |
+
# perform guidance
|
688 |
+
if self.do_classifier_free_guidance:
|
689 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
690 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
691 |
+
|
692 |
+
# compute the previous noisy sample x_t -> x_t-1
|
693 |
+
latents_dtype = latents.dtype
|
694 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
695 |
+
|
696 |
+
if latents.dtype != latents_dtype:
|
697 |
+
if torch.backends.mps.is_available():
|
698 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
699 |
+
latents = latents.to(latents_dtype)
|
700 |
+
|
701 |
+
if callback_on_step_end is not None:
|
702 |
+
callback_kwargs = {}
|
703 |
+
for k in callback_on_step_end_tensor_inputs:
|
704 |
+
callback_kwargs[k] = locals()[k]
|
705 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
706 |
+
|
707 |
+
latents = callback_outputs.pop("latents", latents)
|
708 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
709 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
710 |
+
|
711 |
+
# call the callback, if provided
|
712 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
713 |
+
progress_bar.update()
|
714 |
+
|
715 |
+
if XLA_AVAILABLE:
|
716 |
+
xm.mark_step()
|
717 |
+
|
718 |
+
if output_type == "latent":
|
719 |
+
image = latents
|
720 |
|
721 |
+
else:
|
722 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
723 |
+
|
724 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
725 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
726 |
+
|
727 |
+
# Offload all models
|
728 |
+
self.maybe_free_model_hooks()
|
729 |
|
730 |
if not return_dict:
|
731 |
+
return (image,)
|
732 |
+
|
733 |
+
return HiDreamImagePipelineOutput(images=image)
|
pipeline_output.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL.Image
|
6 |
+
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class HiDreamImagePipelineOutput(BaseOutput):
|
12 |
+
"""
|
13 |
+
Output class for HiDreamImage pipelines.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
17 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
18 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
19 |
+
"""
|
20 |
+
|
21 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
transformer_hidream_image.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional, Tuple, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import einops
|
6 |
+
from einops import repeat
|
7 |
+
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
12 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
13 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
14 |
+
from models.embeddings import PatchEmbed, PooledEmbed, TimestepEmbed, EmbedND, OutEmbed
|
15 |
+
from models.attention import HiDreamAttention, FeedForwardSwiGLU
|
16 |
+
from models.attention_processor import HiDreamAttnProcessor_flashattn
|
17 |
+
from models.moe import MOEFeedForwardSwiGLU
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
class TextProjection(nn.Module):
|
22 |
+
def __init__(self, in_features, hidden_size):
|
23 |
+
super().__init__()
|
24 |
+
self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)
|
25 |
+
|
26 |
+
def forward(self, caption):
|
27 |
+
hidden_states = self.linear(caption)
|
28 |
+
return hidden_states
|
29 |
+
|
30 |
+
class BlockType:
|
31 |
+
TransformerBlock = 1
|
32 |
+
SingleTransformerBlock = 2
|
33 |
+
|
34 |
+
@maybe_allow_in_graph
|
35 |
+
class HiDreamImageSingleTransformerBlock(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
dim: int,
|
39 |
+
num_attention_heads: int,
|
40 |
+
attention_head_dim: int,
|
41 |
+
num_routed_experts: int = 4,
|
42 |
+
num_activated_experts: int = 2
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.num_attention_heads = num_attention_heads
|
46 |
+
self.adaLN_modulation = nn.Sequential(
|
47 |
+
nn.SiLU(),
|
48 |
+
nn.Linear(dim, 6 * dim, bias=True)
|
49 |
+
)
|
50 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
51 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
52 |
+
|
53 |
+
# 1. Attention
|
54 |
+
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
55 |
+
self.attn1 = HiDreamAttention(
|
56 |
+
query_dim=dim,
|
57 |
+
heads=num_attention_heads,
|
58 |
+
dim_head=attention_head_dim,
|
59 |
+
processor = HiDreamAttnProcessor_flashattn(),
|
60 |
+
single = True
|
61 |
+
)
|
62 |
+
|
63 |
+
# 3. Feed-forward
|
64 |
+
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
65 |
+
if num_routed_experts > 0:
|
66 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
67 |
+
dim = dim,
|
68 |
+
hidden_dim = 4 * dim,
|
69 |
+
num_routed_experts = num_routed_experts,
|
70 |
+
num_activated_experts = num_activated_experts,
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
image_tokens: torch.FloatTensor,
|
78 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
79 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
80 |
+
adaln_input: Optional[torch.FloatTensor] = None,
|
81 |
+
rope: torch.FloatTensor = None,
|
82 |
+
|
83 |
+
) -> torch.FloatTensor:
|
84 |
+
wtype = image_tokens.dtype
|
85 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
86 |
+
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
|
87 |
+
|
88 |
+
# 1. MM-Attention
|
89 |
+
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
90 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
91 |
+
attn_output_i = self.attn1(
|
92 |
+
norm_image_tokens,
|
93 |
+
image_tokens_masks,
|
94 |
+
rope = rope,
|
95 |
+
)
|
96 |
+
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
97 |
+
|
98 |
+
# 2. Feed-forward
|
99 |
+
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
100 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
101 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
|
102 |
+
image_tokens = ff_output_i + image_tokens
|
103 |
+
return image_tokens
|
104 |
+
|
105 |
+
@maybe_allow_in_graph
|
106 |
+
class HiDreamImageTransformerBlock(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
dim: int,
|
110 |
+
num_attention_heads: int,
|
111 |
+
attention_head_dim: int,
|
112 |
+
num_routed_experts: int = 4,
|
113 |
+
num_activated_experts: int = 2
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.num_attention_heads = num_attention_heads
|
117 |
+
self.adaLN_modulation = nn.Sequential(
|
118 |
+
nn.SiLU(),
|
119 |
+
nn.Linear(dim, 12 * dim, bias=True)
|
120 |
+
)
|
121 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
122 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
123 |
+
|
124 |
+
# 1. Attention
|
125 |
+
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
126 |
+
self.norm1_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
127 |
+
self.attn1 = HiDreamAttention(
|
128 |
+
query_dim=dim,
|
129 |
+
heads=num_attention_heads,
|
130 |
+
dim_head=attention_head_dim,
|
131 |
+
processor = HiDreamAttnProcessor_flashattn(),
|
132 |
+
single = False
|
133 |
+
)
|
134 |
+
|
135 |
+
# 3. Feed-forward
|
136 |
+
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
137 |
+
if num_routed_experts > 0:
|
138 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
139 |
+
dim = dim,
|
140 |
+
hidden_dim = 4 * dim,
|
141 |
+
num_routed_experts = num_routed_experts,
|
142 |
+
num_activated_experts = num_activated_experts,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
146 |
+
self.norm3_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
147 |
+
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self,
|
151 |
+
image_tokens: torch.FloatTensor,
|
152 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
153 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
154 |
+
adaln_input: Optional[torch.FloatTensor] = None,
|
155 |
+
rope: torch.FloatTensor = None,
|
156 |
+
) -> torch.FloatTensor:
|
157 |
+
wtype = image_tokens.dtype
|
158 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
159 |
+
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
|
160 |
+
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
|
161 |
+
|
162 |
+
# 1. MM-Attention
|
163 |
+
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
164 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
165 |
+
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
|
166 |
+
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
|
167 |
+
|
168 |
+
attn_output_i, attn_output_t = self.attn1(
|
169 |
+
norm_image_tokens,
|
170 |
+
image_tokens_masks,
|
171 |
+
norm_text_tokens,
|
172 |
+
rope = rope,
|
173 |
+
)
|
174 |
+
|
175 |
+
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
176 |
+
text_tokens = gate_msa_t * attn_output_t + text_tokens
|
177 |
+
|
178 |
+
# 2. Feed-forward
|
179 |
+
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
180 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
181 |
+
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
|
182 |
+
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
|
183 |
+
|
184 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
|
185 |
+
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
|
186 |
+
image_tokens = ff_output_i + image_tokens
|
187 |
+
text_tokens = ff_output_t + text_tokens
|
188 |
+
return image_tokens, text_tokens
|
189 |
+
|
190 |
+
@maybe_allow_in_graph
|
191 |
+
class HiDreamImageBlock(nn.Module):
|
192 |
+
def __init__(
|
193 |
+
self,
|
194 |
+
dim: int,
|
195 |
+
num_attention_heads: int,
|
196 |
+
attention_head_dim: int,
|
197 |
+
num_routed_experts: int = 4,
|
198 |
+
num_activated_experts: int = 2,
|
199 |
+
block_type: BlockType = BlockType.TransformerBlock,
|
200 |
+
):
|
201 |
+
super().__init__()
|
202 |
+
block_classes = {
|
203 |
+
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
|
204 |
+
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
|
205 |
+
}
|
206 |
+
self.block = block_classes[block_type](
|
207 |
+
dim,
|
208 |
+
num_attention_heads,
|
209 |
+
attention_head_dim,
|
210 |
+
num_routed_experts,
|
211 |
+
num_activated_experts
|
212 |
+
)
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
image_tokens: torch.FloatTensor,
|
217 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
218 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
219 |
+
adaln_input: torch.FloatTensor = None,
|
220 |
+
rope: torch.FloatTensor = None,
|
221 |
+
) -> torch.FloatTensor:
|
222 |
+
return self.block(
|
223 |
+
image_tokens,
|
224 |
+
image_tokens_masks,
|
225 |
+
text_tokens,
|
226 |
+
adaln_input,
|
227 |
+
rope,
|
228 |
+
)
|
229 |
+
|
230 |
+
class HiDreamImageTransformer2DModel(
|
231 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
232 |
+
):
|
233 |
+
_supports_gradient_checkpointing = True
|
234 |
+
_no_split_modules = ["HiDreamImageBlock"]
|
235 |
+
|
236 |
+
@register_to_config
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
patch_size: Optional[int] = None,
|
240 |
+
in_channels: int = 64,
|
241 |
+
out_channels: Optional[int] = None,
|
242 |
+
num_layers: int = 16,
|
243 |
+
num_single_layers: int = 32,
|
244 |
+
attention_head_dim: int = 128,
|
245 |
+
num_attention_heads: int = 20,
|
246 |
+
caption_channels: List[int] = None,
|
247 |
+
text_emb_dim: int = 2048,
|
248 |
+
num_routed_experts: int = 4,
|
249 |
+
num_activated_experts: int = 2,
|
250 |
+
axes_dims_rope: Tuple[int, int] = (32, 32),
|
251 |
+
max_resolution: Tuple[int, int] = (128, 128),
|
252 |
+
llama_layers: List[int] = None,
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
self.out_channels = out_channels or in_channels
|
256 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
257 |
+
self.llama_layers = llama_layers
|
258 |
+
|
259 |
+
self.t_embedder = TimestepEmbed(self.inner_dim)
|
260 |
+
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim)
|
261 |
+
self.x_embedder = PatchEmbed(
|
262 |
+
patch_size = patch_size,
|
263 |
+
in_channels = in_channels,
|
264 |
+
out_channels = self.inner_dim,
|
265 |
+
)
|
266 |
+
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
267 |
+
|
268 |
+
self.double_stream_blocks = nn.ModuleList(
|
269 |
+
[
|
270 |
+
HiDreamImageBlock(
|
271 |
+
dim = self.inner_dim,
|
272 |
+
num_attention_heads = self.config.num_attention_heads,
|
273 |
+
attention_head_dim = self.config.attention_head_dim,
|
274 |
+
num_routed_experts = num_routed_experts,
|
275 |
+
num_activated_experts = num_activated_experts,
|
276 |
+
block_type = BlockType.TransformerBlock
|
277 |
+
)
|
278 |
+
for i in range(self.config.num_layers)
|
279 |
+
]
|
280 |
+
)
|
281 |
+
|
282 |
+
self.single_stream_blocks = nn.ModuleList(
|
283 |
+
[
|
284 |
+
HiDreamImageBlock(
|
285 |
+
dim = self.inner_dim,
|
286 |
+
num_attention_heads = self.config.num_attention_heads,
|
287 |
+
attention_head_dim = self.config.attention_head_dim,
|
288 |
+
num_routed_experts = num_routed_experts,
|
289 |
+
num_activated_experts = num_activated_experts,
|
290 |
+
block_type = BlockType.SingleTransformerBlock
|
291 |
+
)
|
292 |
+
for i in range(self.config.num_single_layers)
|
293 |
+
]
|
294 |
+
)
|
295 |
+
|
296 |
+
self.final_layer = OutEmbed(self.inner_dim, patch_size, self.out_channels)
|
297 |
+
|
298 |
+
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
299 |
+
caption_projection = []
|
300 |
+
for caption_channel in caption_channels:
|
301 |
+
caption_projection.append(TextProjection(in_features = caption_channel, hidden_size = self.inner_dim))
|
302 |
+
self.caption_projection = nn.ModuleList(caption_projection)
|
303 |
+
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
304 |
+
|
305 |
+
self.gradient_checkpointing = False
|
306 |
+
|
307 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
308 |
+
if hasattr(module, "gradient_checkpointing"):
|
309 |
+
module.gradient_checkpointing = value
|
310 |
+
|
311 |
+
def expand_timesteps(self, timesteps, batch_size, device):
|
312 |
+
if not torch.is_tensor(timesteps):
|
313 |
+
is_mps = device.type == "mps"
|
314 |
+
if isinstance(timesteps, float):
|
315 |
+
dtype = torch.float32 if is_mps else torch.float64
|
316 |
+
else:
|
317 |
+
dtype = torch.int32 if is_mps else torch.int64
|
318 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
319 |
+
elif len(timesteps.shape) == 0:
|
320 |
+
timesteps = timesteps[None].to(device)
|
321 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
322 |
+
timesteps = timesteps.expand(batch_size)
|
323 |
+
return timesteps
|
324 |
+
|
325 |
+
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
326 |
+
if is_training:
|
327 |
+
x = einops.rearrange(x, 'B S (p1 p2 C) -> B C S (p1 p2)', p1=self.config.patch_size, p2=self.config.patch_size)
|
328 |
+
else:
|
329 |
+
x_arr = []
|
330 |
+
for i, img_size in enumerate(img_sizes):
|
331 |
+
pH, pW = img_size
|
332 |
+
x_arr.append(
|
333 |
+
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
|
334 |
+
p1=self.config.patch_size, p2=self.config.patch_size)
|
335 |
+
)
|
336 |
+
x = torch.cat(x_arr, dim=0)
|
337 |
+
return x
|
338 |
+
|
339 |
+
def patchify(self, x, max_seq, img_sizes=None):
|
340 |
+
pz2 = self.config.patch_size * self.config.patch_size
|
341 |
+
if isinstance(x, torch.Tensor):
|
342 |
+
B, C = x.shape[0], x.shape[1]
|
343 |
+
device = x.device
|
344 |
+
dtype = x.dtype
|
345 |
+
else:
|
346 |
+
B, C = len(x), x[0].shape[0]
|
347 |
+
device = x[0].device
|
348 |
+
dtype = x[0].dtype
|
349 |
+
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
350 |
+
|
351 |
+
if img_sizes is not None:
|
352 |
+
for i, img_size in enumerate(img_sizes):
|
353 |
+
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
354 |
+
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
355 |
+
elif isinstance(x, torch.Tensor):
|
356 |
+
pH, pW = x.shape[-2] // self.config.patch_size, x.shape[-1] // self.config.patch_size
|
357 |
+
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.config.patch_size, p2=self.config.patch_size)
|
358 |
+
img_sizes = [[pH, pW]] * B
|
359 |
+
x_masks = None
|
360 |
+
else:
|
361 |
+
raise NotImplementedError
|
362 |
+
return x, x_masks, img_sizes
|
363 |
+
|
364 |
+
def forward(
|
365 |
+
self,
|
366 |
+
hidden_states: torch.Tensor,
|
367 |
+
timesteps: torch.LongTensor = None,
|
368 |
+
encoder_hidden_states: torch.Tensor = None,
|
369 |
+
pooled_embeds: torch.Tensor = None,
|
370 |
+
img_sizes: Optional[List[Tuple[int, int]]] = None,
|
371 |
+
img_ids: Optional[torch.Tensor] = None,
|
372 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
373 |
+
return_dict: bool = True,
|
374 |
+
):
|
375 |
+
if joint_attention_kwargs is not None:
|
376 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
377 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
378 |
+
else:
|
379 |
+
lora_scale = 1.0
|
380 |
+
|
381 |
+
if USE_PEFT_BACKEND:
|
382 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
383 |
+
scale_lora_layers(self, lora_scale)
|
384 |
+
else:
|
385 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
386 |
+
logger.warning(
|
387 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
388 |
+
)
|
389 |
+
|
390 |
+
# spatial forward
|
391 |
+
batch_size = hidden_states.shape[0]
|
392 |
+
hidden_states_type = hidden_states.dtype
|
393 |
+
|
394 |
+
# 0. time
|
395 |
+
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
396 |
+
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
397 |
+
p_embedder = self.p_embedder(pooled_embeds)
|
398 |
+
adaln_input = timesteps + p_embedder
|
399 |
+
|
400 |
+
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
401 |
+
if image_tokens_masks is None:
|
402 |
+
pH, pW = img_sizes[0]
|
403 |
+
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
404 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
405 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
406 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
407 |
+
hidden_states = self.x_embedder(hidden_states)
|
408 |
+
|
409 |
+
T5_encoder_hidden_states = encoder_hidden_states[0]
|
410 |
+
encoder_hidden_states = encoder_hidden_states[-1]
|
411 |
+
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
412 |
+
|
413 |
+
if self.caption_projection is not None:
|
414 |
+
new_encoder_hidden_states = []
|
415 |
+
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
416 |
+
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
417 |
+
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
418 |
+
new_encoder_hidden_states.append(enc_hidden_state)
|
419 |
+
encoder_hidden_states = new_encoder_hidden_states
|
420 |
+
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
421 |
+
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
422 |
+
encoder_hidden_states.append(T5_encoder_hidden_states)
|
423 |
+
|
424 |
+
txt_ids = torch.zeros(
|
425 |
+
batch_size,
|
426 |
+
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
427 |
+
3,
|
428 |
+
device=img_ids.device, dtype=img_ids.dtype
|
429 |
+
)
|
430 |
+
ids = torch.cat((img_ids, txt_ids), dim=1)
|
431 |
+
rope = self.pe_embedder(ids)
|
432 |
+
|
433 |
+
# 2. Blocks
|
434 |
+
block_id = 0
|
435 |
+
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
436 |
+
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
437 |
+
for bid, block in enumerate(self.double_stream_blocks):
|
438 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
439 |
+
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
440 |
+
if self.training and self.gradient_checkpointing:
|
441 |
+
def create_custom_forward(module, return_dict=None):
|
442 |
+
def custom_forward(*inputs):
|
443 |
+
if return_dict is not None:
|
444 |
+
return module(*inputs, return_dict=return_dict)
|
445 |
+
else:
|
446 |
+
return module(*inputs)
|
447 |
+
return custom_forward
|
448 |
+
|
449 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
450 |
+
hidden_states, initial_encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
451 |
+
create_custom_forward(block),
|
452 |
+
hidden_states,
|
453 |
+
image_tokens_masks,
|
454 |
+
cur_encoder_hidden_states,
|
455 |
+
adaln_input,
|
456 |
+
rope,
|
457 |
+
**ckpt_kwargs,
|
458 |
+
)
|
459 |
+
else:
|
460 |
+
hidden_states, initial_encoder_hidden_states = block(
|
461 |
+
image_tokens = hidden_states,
|
462 |
+
image_tokens_masks = image_tokens_masks,
|
463 |
+
text_tokens = cur_encoder_hidden_states,
|
464 |
+
adaln_input = adaln_input,
|
465 |
+
rope = rope,
|
466 |
+
)
|
467 |
+
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
468 |
+
block_id += 1
|
469 |
+
|
470 |
+
image_tokens_seq_len = hidden_states.shape[1]
|
471 |
+
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
472 |
+
hidden_states_seq_len = hidden_states.shape[1]
|
473 |
+
if image_tokens_masks is not None:
|
474 |
+
encoder_attention_mask_ones = torch.ones(
|
475 |
+
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
476 |
+
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
|
477 |
+
)
|
478 |
+
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
|
479 |
+
|
480 |
+
for bid, block in enumerate(self.single_stream_blocks):
|
481 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
482 |
+
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
483 |
+
if self.training and self.gradient_checkpointing:
|
484 |
+
def create_custom_forward(module, return_dict=None):
|
485 |
+
def custom_forward(*inputs):
|
486 |
+
if return_dict is not None:
|
487 |
+
return module(*inputs, return_dict=return_dict)
|
488 |
+
else:
|
489 |
+
return module(*inputs)
|
490 |
+
return custom_forward
|
491 |
+
|
492 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
493 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
494 |
+
create_custom_forward(block),
|
495 |
+
hidden_states,
|
496 |
+
image_tokens_masks,
|
497 |
+
None,
|
498 |
+
adaln_input,
|
499 |
+
rope,
|
500 |
+
**ckpt_kwargs,
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
hidden_states = block(
|
504 |
+
image_tokens = hidden_states,
|
505 |
+
image_tokens_masks = image_tokens_masks,
|
506 |
+
text_tokens = None,
|
507 |
+
adaln_input = adaln_input,
|
508 |
+
rope = rope,
|
509 |
+
)
|
510 |
+
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
511 |
+
block_id += 1
|
512 |
+
|
513 |
+
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
514 |
+
output = self.final_layer(hidden_states, adaln_input)
|
515 |
+
output = self.unpatchify(output, img_sizes, self.training)
|
516 |
+
if image_tokens_masks is not None:
|
517 |
+
image_tokens_masks = image_tokens_masks[:, :image_tokens_seq_len]
|
518 |
+
|
519 |
+
if USE_PEFT_BACKEND:
|
520 |
+
# remove `lora_scale` from each PEFT layer
|
521 |
+
unscale_lora_layers(self, lora_scale)
|
522 |
+
|
523 |
+
if not return_dict:
|
524 |
+
return (output, image_tokens_masks)
|
525 |
+
return Transformer2DModelOutput(sample=output, mask=image_tokens_masks)
|
526 |
+
|