LPX55 commited on
Commit
1d1e811
·
verified ·
1 Parent(s): f0cbbbc

Create app_alpha.py

Browse files
Files changed (1) hide show
  1. app_alpha.py +221 -0
app_alpha.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+ from PIL import Image
5
+ import spaces
6
+ import torch
7
+ from huggingface_hub import hf_hub_download, HfApi
8
+ from diffusers import FluxPriorReduxPipeline, FluxPipeline
9
+ from diffusers.utils import load_image
10
+ import os
11
+ api = HfApi(
12
+ token=os.getenv('HF_TOKEN'), # Token is not persisted on the machine.
13
+ )
14
+ MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
16
+
17
+ pipe = FluxPipeline.from_pretrained(
18
+ "black-forest-labs/FLUX.1-dev",
19
+ torch_dtype=torch.bfloat16,
20
+ token=os.getenv('HF_TOKEN'),
21
+ ).to("cuda")
22
+ pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
23
+ pipe.fuse_lora(lora_scale=0.125)
24
+ pipe.to(device="cuda", dtype=torch.bfloat16)
25
+
26
+ pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
27
+ "ostris/Flex.1-alpha-Redux",
28
+ text_encoder=pipe.text_encoder,
29
+ tokenizer=pipe.tokenizer,
30
+ text_encoder_2=pipe.text_encoder_2,
31
+ tokenizer_2=pipe.tokenizer_2,
32
+ torch_dtype=torch.bfloat16
33
+ ).to("cuda")
34
+
35
+ examples = [[Image.open("mona_lisa.jpg"), "pink hair, at the beach", None, "", 0.035, 1., 1., 1., 1., 0, False],
36
+ [Image.open("1665_Girl_with_a_Pearl_Earring.jpg"), "", Image.open("dali_example.jpg"), "", 0.08, .4, .6, .33, 1., 1912857110, False]]
37
+
38
+ @spaces.GPU
39
+ def infer(control_image, prompt, image_2, prompt_2, reference_scale= 0.03 ,
40
+ prompt_embeds_scale_1 =1, prompt_embeds_scale_2 =1, pooled_prompt_embeds_scale_1 =1, pooled_prompt_embeds_scale_2 =1,
41
+ seed=42, randomize_seed=False, width=1024, height=1024,
42
+ guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
43
+ if randomize_seed:
44
+ seed = random.randint(0, MAX_SEED)
45
+ if image_2 is not None:
46
+ pipe_prior_output = pipe_prior_redux([control_image, image_2],
47
+ prompt=[prompt, prompt_2],
48
+ prompt_embeds_scale = [prompt_embeds_scale_1, prompt_embeds_scale_2],
49
+ pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2])
50
+ else:
51
+ pipe_prior_output = pipe_prior_redux(control_image, prompt=prompt, prompt_embeds_scale = [prompt_embeds_scale_1],
52
+ pooled_prompt_embeds_scale = [pooled_prompt_embeds_scale_1])
53
+ cond_size = 729
54
+ hidden_size = 4096
55
+ max_sequence_length = 512
56
+ full_attention_size = max_sequence_length + hidden_size + cond_size
57
+ attention_mask = torch.zeros(
58
+ (full_attention_size, full_attention_size), device="cuda", dtype=torch.bfloat16
59
+ )
60
+ bias = torch.log(
61
+ torch.tensor(reference_scale, dtype=torch.bfloat16, device="cuda").clamp(min=1e-5, max=1)
62
+ )
63
+ attention_mask[:, max_sequence_length : max_sequence_length + cond_size] = bias
64
+ joint_attention_kwargs=dict(attention_mask=attention_mask)
65
+ images = pipe(
66
+ guidance_scale=guidance_scale,
67
+ width=width,
68
+ height=height,
69
+ num_inference_steps=num_inference_steps,
70
+ generator=torch.Generator("cpu").manual_seed(seed),
71
+ joint_attention_kwargs=joint_attention_kwargs,
72
+ **pipe_prior_output,
73
+ ).images[0]
74
+ return images, seed
75
+
76
+ css="""
77
+ #col-container {
78
+ margin: 0 auto;
79
+ max-width: 960px;
80
+ }
81
+ """
82
+
83
+ with gr.Blocks(css=css) as demo:
84
+
85
+ with gr.Column(elem_id="col-container"):
86
+ gr.Markdown(f"""# ⚡️ Fast FLUX.1 Redux [dev] ⚡️
87
+ An adapter for FLUX [dev] to create image variations combined with ByteDance [
88
+ Hyper FLUX 8 Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) 🏎️
89
+ Now with added support:
90
+ - prompt input
91
+ - attention masking for improved prompt adherence
92
+ - multiple image interpolation
93
+
94
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
95
+ """)
96
+ with gr.Row():
97
+ with gr.Column():
98
+ input_image = gr.Image(label="Image to create variations", type="pil")
99
+ prompt = gr.Text(
100
+ label="Prompt",
101
+ show_label=False,
102
+ max_lines=1,
103
+ placeholder="Enter your prompt",
104
+ container=False,
105
+ )
106
+ reference_scale = gr.Slider(
107
+ info="lower to enhance prompt adherence",
108
+ label="Masking Scale",
109
+ minimum=0.01,
110
+ maximum=0.08,
111
+ step=0.001,
112
+ value=0.03,
113
+ )
114
+ run_button = gr.Button("Run")
115
+ with gr.Column():
116
+ image_2 = gr.Image(label="2nd image to create interpolated variations", type="pil")
117
+ prompt_2 = gr.Text(
118
+ label="2nd Prompt",
119
+ show_label=False,
120
+ max_lines=1,
121
+ placeholder="Enter your prompt",
122
+ container=False,
123
+ )
124
+
125
+ result = gr.Image(label="Result", show_label=False)
126
+
127
+ with gr.Accordion("Advanced Settings", open=False):
128
+
129
+ seed = gr.Slider(
130
+ label="Seed",
131
+ minimum=0,
132
+ maximum=MAX_SEED,
133
+ step=1,
134
+ value=0,
135
+ )
136
+
137
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
138
+
139
+ with gr.Row():
140
+ prompt_embeds_scale_1 = gr.Slider(
141
+ label="prompt embeds scale 1st image",
142
+ minimum=0,
143
+ maximum=1.5,
144
+ step=0.01,
145
+ value=1,
146
+ )
147
+ prompt_embeds_scale_2 = gr.Slider(
148
+ label="prompt embeds scale 2nd image",
149
+ minimum=0,
150
+ maximum=1.5,
151
+ step=0.01,
152
+ value=1,
153
+ )
154
+ pooled_prompt_embeds_scale_1 = gr.Slider(
155
+ label="pooled prompt embeds scale 1nd image",
156
+ minimum=0,
157
+ maximum=1.5,
158
+ step=0.01,
159
+ value=1,
160
+ )
161
+ pooled_prompt_embeds_scale_2 = gr.Slider(
162
+ label="pooled prompt embeds scale 2nd image",
163
+ minimum=0,
164
+ maximum=1.5,
165
+ step=0.01,
166
+ value=1,
167
+ )
168
+
169
+ with gr.Row():
170
+
171
+ width = gr.Slider(
172
+ label="Width",
173
+ minimum=256,
174
+ maximum=MAX_IMAGE_SIZE,
175
+ step=32,
176
+ value=1024,
177
+ )
178
+
179
+ height = gr.Slider(
180
+ label="Height",
181
+ minimum=256,
182
+ maximum=MAX_IMAGE_SIZE,
183
+ step=32,
184
+ value=1024,
185
+ )
186
+
187
+ with gr.Row():
188
+
189
+ guidance_scale = gr.Slider(
190
+ label="Guidance Scale",
191
+ minimum=1,
192
+ maximum=15,
193
+ step=0.1,
194
+ value=3.5,
195
+ )
196
+
197
+ num_inference_steps = gr.Slider(
198
+ label="Number of inference steps",
199
+ minimum=1,
200
+ maximum=30,
201
+ step=1,
202
+ value=8,
203
+ )
204
+
205
+ gr.Examples(
206
+ examples=examples,
207
+ inputs=[input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed],
208
+ outputs=[result, seed],
209
+ fn=infer,
210
+ )
211
+
212
+ gr.on(
213
+ triggers=[run_button.click],
214
+ fn = infer,
215
+ inputs = [input_image, prompt, image_2, prompt_2, reference_scale, prompt_embeds_scale_1, prompt_embeds_scale_2, pooled_prompt_embeds_scale_1, pooled_prompt_embeds_scale_2, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
216
+ outputs = [result, seed]
217
+ )
218
+
219
+ demo.launch()
220
+
221
+