import threading, queue, time, os, nltk, re, json from flask import Flask from flask_cors import CORS from api import * from extensions import * from constants import * from configs import * from tokenxxx import * from models import * from model_loader import * from utils import * from background_tasks import * from text_generation import * from sadtalker_utils import * state_dict, enc, config, model_gpt2, device, news_clf, tfidf_vectorizer, text_queue, categories, background_threads, feedback_queue, reasoning_queue, seen_responses, dialogue_history, vocabulary, word_to_index, index_to_word, translation_model, sp, codegen_model, codegen_tokenizer, codegen_vocabulary, codegen_index_to_word, codegen_word_to_index, summarization_model, summarization_vocabulary, summarization_word_to_index, summarization_index_to_word, sadtalker_instance, imagegen_model, image_to_3d_model, text_to_video_model, stream_type, sentiment_model, stt_model, tts_model, musicgen_model, xtts_model = None, None, None, None, torch.device("cuda" if torch.cuda.is_available() else "cpu"), None, None, queue.Queue(), None, [], queue.Queue(), queue.Queue(), set(), [], set(), {}, [], None, None, None, None, None, None, set(), {}, [], None, None, None, None, "text", None, None, None, None, None def load_models(): global model_gpt2, enc, translation_model, codegen_model, codegen_tokenizer, summarization_model, imagegen_model, image_to_3d_model, text_to_video_model, sadtalker_instance, sentiment_model, stt_model, tts_model, musicgen_model, xtts_model model_gpt2, enc = initialize_gpt2_model(GPT2_FOLDER, {MODEL_FILE: MODEL_URL, ENCODER_FILE: ENCODER_URL, VOCAB_FILE: VOCAB_URL, CONFIG_FILE: GPT2CONFHG}) translation_model = initialize_translation_model(TRANSLATION_FOLDER, TRANSLATION_MODEL_FILES_URLS) codegen_model, codegen_tokenizer, _, _, _ = initialize_codegen_model(CODEGEN_FOLDER, CODEGEN_FILES_URLS) summarization_model, _, _, _ = initialize_summarization_model(SUMMARIZATION_FOLDER, SUMMARIZATION_FILES_URLS) imagegen_model = initialize_imagegen_model(IMAGEGEN_FOLDER, IMAGEGEN_FILES_URLS) image_to_3d_model = initialize_image_to_3d_model(IMAGE_TO_3D_FOLDER, IMAGE_TO_3D_FILES_URLS) text_to_video_model = initialize_text_to_video_model(TEXT_TO_VIDEO_FOLDER, TEXT_TO_VIDEO_FILES_URLS) sentiment_model = initialize_sentiment_model(SENTIMENT_FOLDER, SENTIMENT_FILES_URLS) stt_model = initialize_stt_model(STT_FOLDER, STT_FILES_URLS) tts_model = initialize_tts_model(TTS_FOLDER, TTS_FILES_URLS) musicgen_model = initialize_musicgen_model(MUSICGEN_FOLDER, MUSICGEN_FILES_URLS) xtts_model = initialize_xtts_model(XTTS_FOLDER, XTTS_FILES_URLS) sadtalker_instance = SadTalker(checkpoint_path='./checkpoints', config_path='./src/config') if __name__ == "__main__": nltk.download('punkt') load_models() categories = ['Category1', 'Category2', 'Category3', 'Category4', 'Category5'] import background_tasks background_tasks.categories = categories; background_tasks.text_queue = text_queue; background_tasks.reasoning_queue = reasoning_queue background_threads.append(threading.Thread(target=generate_and_queue_text, args=('en',), daemon=True)); background_threads.append(threading.Thread(target=generate_and_queue_text, args=('es',), daemon=True)) background_threads.append(threading.Thread(target=background_training, daemon=True)); background_threads.append(threading.Thread(target=background_reasoning_queue, daemon=True)) for thread in background_threads: thread.start() app.run(host='0.0.0.0', port=7860)