File size: 5,925 Bytes
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
e83e49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c817fd
 
 
 
 
e83e49f
1c817fd
e83e49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c817fd
 
e83e49f
 
 
1c817fd
e83e49f
 
 
 
 
 
 
1c817fd
e83e49f
 
1c817fd
e83e49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c817fd
e83e49f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import torch
import torch.nn.functional as F
from tqdm import trange
import time
from tokenxxx import *
from main import *
from duckduckgo_search import DDGS

def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    top_k = min(top_k, logits.size(-1))
    if top_k > 0:
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., [-1]]
        logits[indices_to_remove] = filter_value
    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
        sorted_indices_to_remove = cumulative_probs > top_p
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0
        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits

def sample_sequence(prompt, model, enc, length, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, device="cpu"):
    context_tokens = enc.encode(prompt)
    context_tokens_tensor = torch.tensor([context_tokens], dtype=torch.long, device=device)
    generated = context_tokens
    past_key_values = None

    with torch.no_grad():
        for _ in range(length):
            outputs = model(context_tokens_tensor, past_key_values=past_key_values)
            next_token_logits = outputs[0][:, -1, :] / temperature
            past_key_values = outputs[1]
            for token_index in set(generated):
                next_token_logits[0, token_index] /= repetition_penalty
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            if temperature == 0:
                next_token = torch.argmax(filtered_logits, dim=-1).unsqueeze(0)
            else:
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated += next_token.tolist()[0]
            token = next_token.tolist()[0][0]
            yield enc.decode([token])
            if token == enc.encoder[END_OF_TEXT_TOKEN]:
                yield "<END_STREAM>"
                return

def sample_sequence_codegen(prompt, model, tokenizer, length, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, device="cpu"):
    context_tokens = tokenizer.encode(prompt)
    context_tokens_tensor = torch.tensor([context_tokens], dtype=torch.long, device=device).unsqueeze(0)
    generated = context_tokens
    past_key_values = None
    with torch.no_grad():
        for _ in range(length):
            outputs = model(input_ids=context_tokens_tensor, past_key_values=past_key_values, labels=None)
            next_token_logits = outputs[0][:, -1, :] / temperature
            past_key_values = outputs[1]
            for token_index in set(generated):
                next_token_logits[0, token_index] /= repetition_penalty
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
            if temperature == 0:
                next_token = torch.argmax(filtered_logits, dim=-1).unsqueeze(0)
            else:
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
            generated.append(next_token.tolist()[0][0])
            token = next_token.tolist()[0][0]
            yield tokenizer.decode([token])
            if token == 50256:
                yield "<END_STREAM>"
                return

def perform_reasoning_stream(text_input, temperature, top_k, top_p, repetition_penalty):
    prompt_text = SYSTEM_PROMPT + "\n\n"
    prompt_text += "User: " + text_input + "\nAssistant:"
    reasoning_prompt = prompt_text

    ddgs = DDGS()
    search_results = [r for r in ddgs.text(text_input, max_results=MAX_XDD)]
    if search_results:
        prompt_text += "\nWeb Search Results:\n"
        for result in search_results:
            prompt_text += f"- {result['body']}\n"
        prompt_text += "\n"

    generated_text_stream = []
    stream_type = "text"

    if "code" in text_input.lower() or "program" in text_input.lower():
        if codegen_model and codegen_tokenizer:
            generated_text_stream = sample_sequence_codegen(
                prompt=reasoning_prompt,
                model=codegen_model,
                tokenizer=codegen_tokenizer,
                length=999999999,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                device=device
            )
            stream_type = "text"
    elif "summarize" in text_input.lower() or "summary" in text_input.lower():
        if summarization_model:
            summary = summarize_text(text_input)
            yield f"SUMMARY_TEXT:{summary}"
            yield "<END_STREAM>"
            stream_type = "summary"
    else:
        if model_gpt2 and enc:
            generated_text_stream = sample_sequence(
                prompt=reasoning_prompt,
                model=model_gpt2,
                enc=enc,
                length=999999999,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                device=device
            )
            stream_type = "text"

    accumulated_text = ""
    if stream_type == "text":
        for token in generated_text_stream:
            if token == "<END_STREAM>":
                yield accumulated_text
                yield "<END_STREAM>"
                return
            if token == END_OF_TEXT_TOKEN:
                accumulated_text += END_OF_TEXT_TOKEN
                continue
            if token:
                accumulated_text += token