File size: 40,318 Bytes
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c817fd
 
 
 
 
e83e49f
 
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
 
 
 
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
e83e49f
 
1c817fd
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
 
1c817fd
 
e83e49f
 
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
 
 
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83e49f
 
1c817fd
 
e83e49f
1c817fd
 
 
 
 
 
e83e49f
1c817fd
e83e49f
1c817fd
 
 
 
 
 
 
 
 
 
0ff6756
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
import os
import shutil
import uuid
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import yaml
from PIL import Image
from skimage import img_as_ubyte, transform
import safetensors
import librosa
from pydub import AudioSegment
import imageio
from scipy import signal
from scipy.io import loadmat, savemat, wavfile
import glob
import tempfile
from tqdm import tqdm
import math
import torchaudio
import urllib.request

REALESRGAN_URL = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
CODEFORMER_URL = "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
RESTOREFORMER_URL = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth"
GFPGAN_URL = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
kp_url = "https://huggingface.co/usyd-community/vitpose-base-simple/resolve/main/model.safetensors"
kp_file = "kp_detector.safetensors"
aud_url = "https://huggingface.co/vinthony/SadTalker/resolve/main/auido2pose_00140-model.pth"
aud_file = "auido2pose_00140-model.pth"
wav_url = "https://huggingface.co/facebook/wav2vec2-base/resolve/main/pytorch_model.bin"
wav_file = "wav2vec2.pth"
gen_url = "https://huggingface.co/vinthony/SadTalker/resolve/main/wav2lip.pth"
gen_file = "generator.pth"
mapx_url = "https://huggingface.co/vinthony/SadTalker/resolve/main/mapping_00229-model.pth.tar"
mapx_file = "mapping.pth"
den_url = "https://huggingface.co/KwaiVGI/LivePortrait/resolve/main/liveportrait/base_models/motion_extractor.pth"
den_file = "dense_motion.pth"


def download_model(url, filename, checkpoint_dir):
    if not os.path.exists(os.path.join(checkpoint_dir, filename)):
        print(f"Downloading {filename}...")
        os.makedirs(checkpoint_dir, exist_ok=True)
        urllib.request.urlretrieve(url, os.path.join(checkpoint_dir, filename))
        print(f"{filename} downloaded.")
    else:
        print(f"{filename} already exists.")


def mp3_to_wav_util(mp3_filename, wav_filename, frame_rate):
    AudioSegment.from_file(mp3_filename).set_frame_rate(frame_rate).export(wav_filename, format="wav")


def load_wav_util(path, sr):
    return librosa.core.load(path, sr=sr)[0]


def save_wav_util(wav, path, sr):
    wav *= 32767 / max(0.01, np.max(np.abs(wav)))
    wavfile.write(path, sr, wav.astype(np.int16))


class OcclusionAwareKPDetector(nn.Module):

    def __init__(self, kp_channels, num_kp, num_dilation_blocks, dropout_rate):
        super(OcclusionAwareKPDetector, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(64, num_kp, kernel_size=3, padding=1)

    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.conv2(x)
        kp = {'value': x.view(x.size(0), -1)}
        return kp


class Wav2Vec2Model(nn.Module):

    def __init__(self):
        super(Wav2Vec2Model, self).__init__()
        self.conv = nn.Conv1d(1, 64, kernel_size=10, stride=5, padding=5)
        self.bn = nn.BatchNorm1d(64)
        self.relu = nn.ReLU()
        self.fc = nn.Linear(64, 2048)

    def forward(self, audio):
        x = audio.unsqueeze(1)
        x = self.relu(self.bn(self.conv(x)))
        x = torch.mean(x, dim=-1)
        x = self.fc(x)
        return x


class AudioCoeffsPredictor(nn.Module):

    def __init__(self, input_dim, output_dim):
        super(AudioCoeffsPredictor, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, audio_embedding):
        return self.linear(audio_embedding)


class MappingNet(nn.Module):

    def __init__(self, num_coeffs, num_layers, hidden_dim):
        super(MappingNet, self).__init__()
        layers = []
        input_dim = num_coeffs * 2
        for _ in range(num_layers):
            layers.append(nn.Linear(input_dim, hidden_dim))
            layers.append(nn.ReLU())
            input_dim = hidden_dim
        layers.append(nn.Linear(hidden_dim, num_coeffs))
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        return self.net(x)


class DenseMotionNetwork(nn.Module):

    def __init__(self, num_kp, num_channels, block_expansion, num_blocks, max_features):
        super(DenseMotionNetwork, self).__init__()
        self.conv1 = nn.Conv2d(num_channels, max_features, kernel_size=3, padding=1)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(max_features, num_channels, kernel_size=3, padding=1)

    def forward(self, kp_source, kp_driving, jacobian):
        x = self.relu(self.conv1(kp_source))
        x = self.conv2(x)
        sparse_motion = {'dense_motion': x}
        return sparse_motion


class Hourglass(nn.Module):

    def __init__(self, block_expansion, num_blocks, max_features, num_channels, kp_size, num_deform_blocks):
        super(Hourglass, self).__init__()
        self.encoder = nn.Sequential(nn.Conv2d(num_channels, max_features, kernel_size=7, stride=2, padding=3),
                                     nn.BatchNorm2d(max_features), nn.ReLU())
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(max_features, num_channels, kernel_size=4, stride=2, padding=1), nn.Tanh())

    def forward(self, source_image, kp_driving, **kwargs):
        x = self.encoder(source_image)
        x = self.decoder(x)
        B, C, H, W = x.size()
        video = []
        for _ in range(10):
            frame = (x[0].cpu().detach().numpy().transpose(1, 2, 0) * 127.5 + 127.5).clip(0, 255).astype(
                np.uint8)
            video.append(frame)
        return video


class Face3DHelper:

    def __init__(self, local_pca_path, device):
        self.local_pca_path = local_pca_path
        self.device = device

    def run(self, source_image):
        h, w, _ = source_image.shape
        x_min = w // 4
        y_min = h // 4
        x_max = x_min + w // 2
        y_max = y_min + h // 2
        return [x_min, y_min, x_max, y_max]


class Face3DHelperOld(Face3DHelper):

    def __init__(self, local_pca_path, device):
        super(Face3DHelperOld, self).__init__(local_pca_path, device)


class MouthDetector:

    def __init__(self):
        pass

    def detect(self, image):
        h, w = image.shape[:2]
        return (w // 2, h // 2)


class KeypointNorm(nn.Module):

    def __init__(self, device):
        super(KeypointNorm, self).__init__()
        self.device = device

    def forward(self, kp_driving):
        return kp_driving


def save_video_with_watermark(video_frames, audio_path, output_path):
    H, W, _ = video_frames[0].shape
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H))
    for frame in video_frames:
        out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
    out.release()


def paste_pic(video_path, source_image_crop, crop_info, audio_path, output_path):
    shutil.copy(video_path, output_path)


class TTSTalker:

    def __init__(self):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.tts_model = None

    def load_model(self):
        self.tts_model = self

    def tokenizer(self, text):
        return [ord(c) for c in text]

    def __call__(self, input_tokens):
        return torch.zeros(1, 16000, device=self.device)

    def test(self, text, lang='en'):
        if self.tts_model is None:
            self.load_model()
        output_path = os.path.join('./results', str(uuid.uuid4()) + '.wav')
        os.makedirs('./results', exist_ok=True)
        tokens = self.tokenizer(text)
        input_tokens = torch.tensor([tokens], dtype=torch.long).to(self.device)
        with torch.no_grad():
            audio_output = self(input_tokens)
        torchaudio.save(output_path, audio_output.cpu(), 16000)
        return output_path


class SadTalker:

    def __init__(self, checkpoint_path='checkpoints', config_path='src/config', size=256, preprocess='crop',

                 old_version=False):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.cfg = self.get_cfg_defaults()
        self.merge_from_file(os.path.join(config_path, 'sadtalker_config.yaml'))
        self.cfg['MODEL']['CHECKPOINTS_DIR'] = checkpoint_path
        self.cfg['MODEL']['CONFIG_DIR'] = config_path
        self.cfg['MODEL']['DEVICE'] = self.device
        self.cfg['INPUT_IMAGE'] = {}
        self.cfg['INPUT_IMAGE']['SOURCE_IMAGE'] = 'None'
        self.cfg['INPUT_IMAGE']['DRIVEN_AUDIO'] = 'None'
        self.cfg['INPUT_IMAGE']['PREPROCESS'] = preprocess
        self.cfg['INPUT_IMAGE']['SIZE'] = size
        self.cfg['INPUT_IMAGE']['OLD_VERSION'] = old_version

        download_model(kp_url, kp_file, checkpoint_path)
        download_model(aud_url, aud_file, checkpoint_path)
        download_model(wav_url, wav_file, checkpoint_path)
        download_model(gen_url, gen_file, checkpoint_path)
        download_model(mapx_url, mapx_file, checkpoint_path)
        download_model(den_url, den_file, checkpoint_path)
        download_model(GFPGAN_URL, 'GFPGANv1.4.pth', checkpoint_path)
        download_model(REALESRGAN_URL, 'RealESRGAN_x2plus.pth', checkpoint_path)

        self.sadtalker_model = SadTalkerModel(self.cfg, device_id=[0])

    def get_cfg_defaults(self):
        return CN(
            MODEL=CN(
                CHECKPOINTS_DIR='',
                CONFIG_DIR='',
                DEVICE=self.device,
                SCALE=64,
                NUM_VOXEL_FRAMES=8,
                NUM_MOTION_FRAMES=10,
                MAX_FEATURES=256,
                DRIVEN_AUDIO_SAMPLE_RATE=16000,
                VIDEO_FPS=25,
                OUTPUT_VIDEO_FPS=None,
                OUTPUT_AUDIO_SAMPLE_RATE=None,
                USE_ENHANCER=False,
                ENHANCER_NAME='',
                BG_UPSAMPLER=None,
                IS_HALF=False
            ),
            INPUT_IMAGE=CN()
        )

    def merge_from_file(self, filepath):
        if os.path.exists(filepath):
            with open(filepath, 'r') as f:
                cfg_from_file = yaml.safe_load(f)
            self.cfg.MODEL.update(CN(cfg_from_file['MODEL']))
            self.cfg.INPUT_IMAGE.update(CN(cfg_from_file['INPUT_IMAGE']))

    def test(self, source_image, driven_audio, preprocess='crop', still_mode=False, use_enhancer=False,

             batch_size=1, size=256, pose_style=0, exp_scale=1.0, use_ref_video=False, ref_video=None,

             ref_info=None, use_idle_mode=False, length_of_audio=0, use_blink=True, result_dir='./results/',

             tts_text=None, tts_lang='en'):
        self.sadtalker_model.test(source_image, driven_audio, preprocess, still_mode, use_enhancer, batch_size, size,
                                  pose_style, exp_scale, use_ref_video, ref_video, ref_info, use_idle_mode,
                                  length_of_audio, use_blink, result_dir, tts_text, tts_lang)
        return self.sadtalker_model.save_result()


class SadTalkerModel:

    def __init__(self, sadtalker_cfg, device_id=[0]):
        self.cfg = sadtalker_cfg
        self.device = sadtalker_cfg.MODEL.get('DEVICE', 'cpu')
        self.sadtalker = SadTalkerInnerModel(sadtalker_cfg, device_id)
        self.preprocesser = self.sadtalker.preprocesser
        self.kp_extractor = self.sadtalker.kp_extractor
        self.generator = self.sadtalker.generator
        self.mapping = self.sadtalker.mapping
        self.he_estimator = self.sadtalker.he_estimator
        self.audio_to_coeff = self.sadtalker.audio_to_coeff
        self.animate_from_coeff = self.sadtalker.animate_from_coeff
        self.face_enhancer = self.sadtalker.face_enhancer

    def test(self, source_image, driven_audio, preprocess='crop', still_mode=False, use_enhancer=False,

             batch_size=1, size=256, pose_style=0, exp_scale=1.0, use_ref_video=False, ref_video=None,

             ref_info=None, use_idle_mode=False, length_of_audio=0, use_blink=True, result_dir='./results/',

             tts_text=None, tts_lang='en', jitter_amount=10, jitter_source_image=False):
        self.inner_test = SadTalkerInner(self, source_image, driven_audio, preprocess, still_mode, use_enhancer,
                                        batch_size, size, pose_style, exp_scale, use_ref_video, ref_video, ref_info,
                                        use_idle_mode, length_of_audio, use_blink, result_dir, tts_text, tts_lang,
                                        jitter_amount, jitter_source_image)
        return self.inner_test.test()

    def save_result(self):
        return self.inner_test.save_result()


class SadTalkerInner:

    def __init__(self, sadtalker_model, source_image, driven_audio, preprocess, still_mode, use_enhancer,

                 batch_size, size, pose_style, exp_scale, use_ref_video, ref_video, ref_info, use_idle_mode,

                 length_of_audio, use_blink, result_dir, tts_text, tts_lang, jitter_amount, jitter_source_image):
        self.sadtalker_model = sadtalker_model
        self.source_image = source_image
        self.driven_audio = driven_audio
        self.preprocess = preprocess
        self.still_mode = still_mode
        self.use_enhancer = use_enhancer
        self.batch_size = batch_size
        self.size = size
        self.pose_style = pose_style
        self.exp_scale = exp_scale
        self.use_ref_video = use_ref_video
        self.ref_video = ref_video
        self.ref_info = ref_info
        self.use_idle_mode = use_idle_mode
        self.length_of_audio = length_of_audio
        self.use_blink = use_blink
        self.result_dir = result_dir
        self.tts_text = tts_text
        self.tts_lang = tts_lang
        self.jitter_amount = jitter_amount
        self.jitter_source_image = jitter_source_image
        self.device = self.sadtalker_model.device
        self.output_path = None

    def get_test_data(self):
        proc = self.sadtalker_model.preprocesser
        if self.tts_text is not None:
            temp_dir = tempfile.mkdtemp()
            audio_path = os.path.join(temp_dir, 'audio.wav')
            tts = TTSTalker()
            tts.test(self.tts_text, self.tts_lang)
            self.driven_audio = audio_path
        source_image_pil = Image.open(self.source_image).convert('RGB')
        if self.jitter_source_image:
            jitter_dx = np.random.randint(-self.jitter_amount, self.jitter_amount + 1)
            jitter_dy = np.random.randint(-self.jitter_amount, self.jitter_amount + 1)
            source_image_pil = Image.fromarray(
                np.roll(np.roll(np.array(source_image_pil), jitter_dx, axis=1), jitter_dy, axis=0))
        source_image_tensor, crop_info, cropped_image = proc.crop(source_image_pil, self.preprocess, self.size)
        if self.still_mode or self.use_idle_mode:
            ref_pose_coeff = proc.generate_still_pose(self.pose_style)
            ref_expression_coeff = proc.generate_still_expression(self.exp_scale)
        elif self.use_idle_mode:
            ref_pose_coeff = proc.generate_idles_pose(self.length_of_audio, self.pose_style)
            ref_expression_coeff = proc.generate_idles_expression(self.length_of_audio)
        else:
            ref_pose_coeff = None
            ref_expression_coeff = None
        audio_tensor, audio_sample_rate = proc.process_audio(self.driven_audio,
                                                             self.sadtalker_model.cfg.MODEL.DRIVEN_AUDIO_SAMPLE_RATE)
        batch = {
            'source_image': source_image_tensor.unsqueeze(0).to(self.device),
            'audio': audio_tensor.unsqueeze(0).to(self.device),
            'ref_pose_coeff': ref_pose_coeff,
            'ref_expression_coeff': ref_expression_coeff,
            'source_image_crop': cropped_image,
            'crop_info': crop_info,
            'use_blink': self.use_blink,
            'pose_style': self.pose_style,
            'exp_scale': self.exp_scale,
            'ref_video': self.ref_video,
            'use_ref_video': self.use_ref_video,
            'ref_info': self.ref_info,
        }
        return batch, audio_sample_rate

    def run_inference(self, batch):
        kp_extractor = self.sadtalker_model.kp_extractor
        generator = self.sadtalker_model.generator
        mapping = self.sadtalker_model.mapping
        he_estimator = self.sadtalker_model.he_estimator
        audio_to_coeff = self.sadtalker_model.audio_to_coeff
        animate_from_coeff = self.sadtalker_model.animate_from_coeff
        proc = self.sadtalker_model.preprocesser
        with torch.no_grad():
            kp_source = kp_extractor(batch['source_image'])
            if self.still_mode or self.use_idle_mode:
                ref_pose_coeff = batch['ref_pose_coeff']
                ref_expression_coeff = batch['ref_expression_coeff']
                pose_coeff = audio_to_coeff.get_pose_coeff(batch['audio'], ref_pose_coeff)
                expression_coeff = audio_to_coeff.get_exp_coeff(batch['audio'], ref_expression_coeff)
            elif self.use_idle_mode:
                ref_pose_coeff = batch['ref_pose_coeff']
                ref_expression_coeff = batch['ref_expression_coeff']
                pose_coeff = audio_to_coeff.get_pose_coeff(batch['audio'], ref_pose_coeff)
                expression_coeff = audio_to_coeff.get_exp_coeff(batch['audio'], ref_expression_coeff)
            else:
                if self.use_ref_video:
                    kp_ref = kp_extractor(batch['source_image'])
                    pose_coeff = audio_to_coeff.get_pose_coeff(batch['audio'], kp_ref=kp_ref,
                                                                use_ref_info=batch['ref_info'])
                else:
                    pose_coeff = audio_to_coeff.get_pose_coeff(batch['audio'])
                expression_coeff = audio_to_coeff.get_exp_coeff(batch['audio'])
            coeff = {'pose_coeff': pose_coeff, 'expression_coeff': expression_coeff}
            if self.use_blink:
                coeff['blink_coeff'] = audio_to_coeff.get_blink_coeff(batch['audio'])
            else:
                coeff['blink_coeff'] = None
            kp_driving = audio_to_coeff(batch['audio'])[0]
            kp_norm = animate_from_coeff.normalize_kp(kp_driving)
            coeff['kp_driving'] = kp_norm
            coeff['jacobian'] = [torch.eye(2).unsqueeze(0).unsqueeze(0).to(self.device)] * 4
            face_enhancer = self.sadtalker_model.face_enhancer if self.use_enhancer else None
            output_video = animate_from_coeff.generate(batch['source_image'], kp_source, coeff, generator, mapping,
                                                        he_estimator, batch['audio'], batch['source_image_crop'],
                                                        face_enhancer=face_enhancer)
        return output_video

    def post_processing(self, output_video, audio_sample_rate, batch):
        proc = self.sadtalker_model.preprocesser
        base_name = os.path.splitext(os.path.basename(batch['source_image_crop']))[0]
        audio_name = os.path.splitext(os.path.basename(self.driven_audio))[0]
        output_video_path = os.path.join(self.result_dir, base_name + '_' + audio_name + '.mp4')
        self.output_path = output_video_path
        video_fps = self.sadtalker_model.cfg.MODEL.VIDEO_FPS if self.sadtalker_model.cfg.MODEL.OUTPUT_VIDEO_FPS is None else \
            self.sadtalker_model.cfg.MODEL.OUTPUT_VIDEO_FPS
        audio_output_sample_rate = self.sadtalker_model.cfg.MODEL.DRIVEN_AUDIO_SAMPLE_RATE if \
            self.sadtalker_model.cfg.MODEL.OUTPUT_AUDIO_SAMPLE_RATE is None else \
            self.sadtalker_model.cfg.MODEL.OUTPUT_AUDIO_SAMPLE_RATE
        if self.use_enhancer:
            enhanced_path = os.path.join(self.result_dir, base_name + '_' + audio_name + '_enhanced.mp4')
            save_video_with_watermark(output_video, self.driven_audio, enhanced_path)
            paste_pic(enhanced_path, batch['source_image_crop'], batch['crop_info'], self.driven_audio,
                      output_video_path)
            os.remove(enhanced_path)
        else:
            save_video_with_watermark(output_video, self.driven_audio, output_video_path)
        if self.tts_text is not None:
            shutil.rmtree(os.path.dirname(self.driven_audio))

    def save_result(self):
        return self.output_path

    def __call__(self):
        return self.output_path

    def test(self):
        batch, audio_sample_rate = self.get_test_data()
        output_video = self.run_inference(batch)
        self.post_processing(output_video, audio_sample_rate, batch)
        return self.save_result()


class SadTalkerInnerModel:

    def __init__(self, sadtalker_cfg, device_id=[0]):
        self.cfg = sadtalker_cfg
        self.device = sadtalker_cfg.MODEL.DEVICE
        self.preprocesser = Preprocesser(sadtalker_cfg, self.device)
        self.kp_extractor = KeyPointExtractor(sadtalker_cfg, self.device)
        self.audio_to_coeff = Audio2Coeff(sadtalker_cfg, self.device)
        self.animate_from_coeff = AnimateFromCoeff(sadtalker_cfg, self.device)
        self.face_enhancer = FaceEnhancer(sadtalker_cfg, self.device) if sadtalker_cfg.MODEL.USE_ENHANCER else None
        self.generator = Generator(sadtalker_cfg, self.device)
        self.mapping = Mapping(sadtalker_cfg, self.device)
        self.he_estimator = OcclusionAwareDenseMotion(sadtalker_cfg, self.device)


class Preprocesser:

    def __init__(self, sadtalker_cfg, device):
        self.cfg = sadtalker_cfg
        self.device = device
        if self.cfg.INPUT_IMAGE.get('OLD_VERSION', False):
            self.face3d_helper = Face3DHelperOld(self.cfg.INPUT_IMAGE.get('LOCAL_PCA_PATH', ''), device)
        else:
            self.face3d_helper = Face3DHelper(self.cfg.INPUT_IMAGE.get('LOCAL_PCA_PATH', ''), device)
        self.mouth_detector = MouthDetector()

    def crop(self, source_image_pil, preprocess_type, size=256):
        source_image = np.array(source_image_pil)
        face_info = self.face3d_helper.run(source_image)
        if face_info is None:
            raise Exception("No face detected")
        x_min, y_min, x_max, y_max = face_info[:4]
        old_size = (x_max - x_min, y_max - y_min)
        x_center = (x_max + x_min) / 2
        y_center = (y_max + y_min) / 2
        if preprocess_type == 'crop':
            face_size = max(x_max - x_min, y_max - y_min)
            x_min = int(x_center - face_size / 2)
            y_min = int(y_center - face_size / 2)
            x_max = int(x_center + face_size / 2)
            y_max = int(y_center + face_size / 2)
        else:
            x_min -= int((x_max - x_min) * 0.1)
            y_min -= int((y_max - y_min) * 0.1)
            x_max += int((x_max - x_min) * 0.1)
            y_max += int((y_max - y_min) * 0.1)
        h, w = source_image.shape[:2]
        x_min = max(0, x_min)
        y_min = max(0, y_min)
        x_max = min(w, x_max)
        y_max = min(h, y_max)
        cropped_image = source_image[y_min:y_max, x_min:x_max]
        cropped_image_pil = Image.fromarray(cropped_image)
        if size is not None and size != 0:
            cropped_image_pil = cropped_image_pil.resize((size, size), Image.Resampling.LANCZOS)
        source_image_tensor = self.img2tensor(cropped_image_pil)
        return source_image_tensor, [[y_min, y_max], [x_min, x_max], old_size, cropped_image_pil.size], os.path.basename(
            self.cfg.INPUT_IMAGE.get('SOURCE_IMAGE', ''))

    def img2tensor(self, img):
        img = np.array(img).astype(np.float32) / 255.0
        img = np.transpose(img, (2, 0, 1))
        return torch.FloatTensor(img)

    def video_to_tensor(self, video, device):
        video_tensor_list = []
        import torchvision.transforms as transforms
        transform_func = transforms.ToTensor()
        for frame in video:
            frame_pil = Image.fromarray(frame)
            frame_tensor = transform_func(frame_pil).unsqueeze(0).to(device)
            video_tensor_list.append(frame_tensor)
        video_tensor = torch.cat(video_tensor_list, dim=0)
        return video_tensor

    def process_audio(self, audio_path, sample_rate):
        wav = load_wav_util(audio_path, sample_rate)
        wav_tensor = torch.FloatTensor(wav).unsqueeze(0)
        return wav_tensor, sample_rate

    def generate_still_pose(self, pose_style):
        ref_pose_coeff = torch.zeros((1, 64), dtype=torch.float32).to(self.device)
        ref_pose_coeff[:, :3] = torch.tensor([0, 0, pose_style * 0.3], dtype=torch.float32)
        return ref_pose_coeff

    def generate_still_expression(self, exp_scale):
        ref_expression_coeff = torch.zeros((1, 64), dtype=torch.float32).to(self.device)
        ref_expression_coeff[:, :3] = torch.tensor([0, 0, exp_scale * 0.3], dtype=torch.float32)
        return ref_expression_coeff

    def generate_idles_pose(self, length_of_audio, pose_style):
        num_frames = int(length_of_audio * self.cfg.MODEL.VIDEO_FPS)
        ref_pose_coeff = torch.zeros((num_frames, 64), dtype=torch.float32).to(self.device)
        start_pose = self.generate_still_pose(pose_style)
        end_pose = self.generate_still_pose(pose_style)
        for frame_idx in range(num_frames):
            alpha = frame_idx / num_frames
            ref_pose_coeff[frame_idx] = (1 - alpha) * start_pose + alpha * end_pose
        return ref_pose_coeff

    def generate_idles_expression(self, length_of_audio):
        num_frames = int(length_of_audio * self.cfg.MODEL.VIDEO_FPS)
        ref_expression_coeff = torch.zeros((num_frames, 64), dtype=torch.float32).to(self.device)
        start_exp = self.generate_still_expression(1.0)
        end_exp = self.generate_still_expression(1.0)
        for frame_idx in range(num_frames):
            alpha = frame_idx / num_frames
            ref_expression_coeff[frame_idx] = (1 - alpha) * start_exp + alpha * end_exp
        return ref_expression_coeff


class KeyPointExtractor(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(KeyPointExtractor, self).__init__()
        self.kp_extractor = OcclusionAwareKPDetector(kp_channels=sadtalker_cfg.MODEL.NUM_MOTION_FRAMES,
                                                      num_kp=10,
                                                      num_dilation_blocks=2,
                                                      dropout_rate=0.1).to(device)
        checkpoint_path = os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'kp_detector.safetensors')
        self.load_kp_detector(checkpoint_path, device)

    def load_kp_detector(self, checkpoint_path, device):
        if os.path.exists(checkpoint_path):
            if checkpoint_path.endswith('safetensors'):
                checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
            else:
                checkpoint = torch.load(checkpoint_path, map_location=device)
            self.kp_extractor.load_state_dict(checkpoint.get('kp_detector', {}))
        else:
            raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")

    def forward(self, x):
        kp = self.kp_extractor(x)
        return kp


class Audio2Coeff(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(Audio2Coeff, self).__init__()
        self.audio_model = Wav2Vec2Model().to(device)
        checkpoint_path = os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'wav2vec2.pth')
        self.load_audio_model(checkpoint_path, device)
        self.pose_mapper = AudioCoeffsPredictor(2048, 64).to(device)
        self.exp_mapper = AudioCoeffsPredictor(2048, 64).to(device)
        self.blink_mapper = AudioCoeffsPredictor(2048, 1).to(device)
        mapping_checkpoint = os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'audio2pose_00140-model.pth')
        self.load_mapping_model(mapping_checkpoint, device)

    def load_audio_model(self, checkpoint_path, device):
        if os.path.exists(checkpoint_path):
            if checkpoint_path.endswith('safetensors'):
                checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
            else:
                checkpoint = torch.load(checkpoint_path, map_location=device)
            self.audio_model.load_state_dict(checkpoint.get("wav2vec2", {}))
        else:
            raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")

    def load_mapping_model(self, checkpoint_path, device):
        if os.path.exists(checkpoint_path):
            if checkpoint_path.endswith('safetensors'):
                checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
            else:
                checkpoint = torch.load(checkpoint_path, map_location=device)
            self.pose_mapper.load_state_dict(checkpoint.get("pose_predictor", {}))
            self.exp_mapper.load_state_dict(checkpoint.get("exp_predictor", {}))
            self.blink_mapper.load_state_dict(checkpoint.get("blink_predictor", {}))
        else:
            raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")

    def get_pose_coeff(self, audio_tensor, ref_pose_coeff=None, kp_ref=None, use_ref_info=''):
        audio_embedding = self.audio_model(audio_tensor)
        pose_coeff = self.pose_mapper(audio_embedding)
        if ref_pose_coeff is not None:
            pose_coeff = ref_pose_coeff
        if kp_ref is not None and use_ref_info == 'pose':
            ref_pose_6d = kp_ref['value'][:, :6]
            pose_coeff[:, :6] = self.mean_std_normalize(ref_pose_6d).mean(dim=1)
        return pose_coeff

    def get_exp_coeff(self, audio_tensor, ref_expression_coeff=None):
        audio_embedding = self.audio_model(audio_tensor)
        expression_coeff = self.exp_mapper(audio_embedding)
        if ref_expression_coeff is not None:
            expression_coeff = ref_expression_coeff
        return expression_coeff

    def get_blink_coeff(self, audio_tensor):
        audio_embedding = self.audio_model(audio_tensor)
        blink_coeff = self.blink_mapper(audio_embedding)
        return blink_coeff

    def forward(self, audio):
        audio_embedding = self.audio_model(audio)
        pose_coeff, expression_coeff, blink_coeff = self.pose_mapper(audio_embedding), self.exp_mapper(
            audio_embedding), self.blink_mapper(audio_embedding)
        return pose_coeff, expression_coeff, blink_coeff

    def mean_std_normalize(self, coeff):
        mean = coeff.mean(dim=1, keepdim=True)
        std = coeff.std(dim=1, keepdim=True)
        return (coeff - mean) / std


class AnimateFromCoeff(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(AnimateFromCoeff, self).__init__()
        self.generator = Generator(sadtalker_cfg, device)
        self.mapping = Mapping(sadtalker_cfg, device)
        self.kp_norm = KeypointNorm(device=device)
        self.he_estimator = OcclusionAwareDenseMotion(sadtalker_cfg, device)

    def normalize_kp(self, kp_driving):
        return self.kp_norm(kp_driving)

    def generate(self, source_image, kp_source, coeff, generator, mapping, he_estimator, audio, source_image_crop,

                 face_enhancer=None):
        kp_driving = coeff['kp_driving']
        jacobian = coeff['jacobian']
        pose_coeff = coeff['pose_coeff']
        expression_coeff = coeff['expression_coeff']
        blink_coeff = coeff['blink_coeff']
        with torch.no_grad():
            if blink_coeff is not None:
                sparse_motion = he_estimator(kp_source, kp_driving, jacobian)
                dense_motion = sparse_motion['dense_motion']
                video_deocclusion = generator(source_image, dense_motion, bg_param={'mask': None, 'color': None})
                face_3d = mapping(expression_coeff, pose_coeff, blink_coeff)
                video_3d = generator(source_image, dense_motion, bg_param={'mask': None, 'color': None},
                                      face_3d_param=face_3d)
                video_output = video_deocclusion['video_no_reocclusion'] + video_3d['video_3d']
                video_output = self.make_animation(video_output)
            else:
                sparse_motion = he_estimator(kp_source, kp_driving, jacobian)
                dense_motion = sparse_motion['dense_motion']
                face_3d = mapping(expression_coeff, pose_coeff)
                video_3d = generator(source_image, dense_motion, bg_param={'mask': None, 'color': None},
                                      face_3d_param=face_3d)
                video_output = video_3d['video_3d']
                video_output = self.make_animation(video_output)
            if face_enhancer is not None:
                video_output_enhanced = []
                for frame in tqdm(video_output, 'Face enhancer running'):
                    pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
                    enhanced_image = face_enhancer.enhance(np.array(pil_image))[0]
                    video_output_enhanced.append(cv2.cvtColor(enhanced_image, cv2.COLOR_BGR2RGB))
                video_output = video_output_enhanced
        return video_output

    def make_animation(self, video_array):
        H, W, _ = video_array[0].shape
        out = cv2.VideoWriter('./tmp.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, (W, H))
        for img in video_array:
            out.write(cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
        out.release()
        video = imageio.mimread('./tmp.mp4')
        os.remove('./tmp.mp4')
        return video


class Generator(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(Generator, self).__init__()
        self.generator = Hourglass(block_expansion=sadtalker_cfg.MODEL.SCALE,
                                     num_blocks=sadtalker_cfg.MODEL.NUM_VOXEL_FRAMES,
                                     max_features=sadtalker_cfg.MODEL.MAX_FEATURES,
                                     num_channels=3,
                                     kp_size=10,
                                     num_deform_blocks=sadtalker_cfg.MODEL.NUM_MOTION_FRAMES).to(device)
        checkpoint_path = os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'generator.pth')
        self.load_generator(checkpoint_path, device)

    def load_generator(self, checkpoint_path, device):
        if os.path.exists(checkpoint_path):
            if checkpoint_path.endswith('safetensors'):
                checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
            else:
                checkpoint = torch.load(checkpoint_path, map_location=device)
            self.generator.load_state_dict(checkpoint.get('generator', {}))
        else:
            raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")

    def forward(self, source_image, dense_motion, bg_param, face_3d_param=None):
        if face_3d_param is not None:
            video_3d = self.generator(source_image, kp_driving=dense_motion, bg_param=bg_param,
                                      face_3d_param=face_3d_param)
        else:
            video_3d = self.generator(source_image, kp_driving=dense_motion, bg_param=bg_param)
        return {'video_3d': video_3d, 'video_no_reocclusion': video_3d}


class Mapping(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(Mapping, self).__init__()
        self.mapping_net = MappingNet(num_coeffs=64, num_layers=3, hidden_dim=128).to(device)
        checkpoint_path = os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'mapping.pth')
        self.load_mapping_net(checkpoint_path, device)
        self.f_3d_mean = torch.zeros(1, 64, device=device)

    def load_mapping_net(self, checkpoint_path, device):
        if os.path.exists(checkpoint_path):
            if checkpoint_path.endswith('safetensors'):
                checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
            else:
                checkpoint = torch.load(checkpoint_path, map_location=device)
            self.mapping_net.load_state_dict(checkpoint.get('mapping', {}))
        else:
            raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")

    def forward(self, expression_coeff, pose_coeff, blink_coeff=None):
        coeff = torch.cat([expression_coeff, pose_coeff], dim=1)
        face_3d = self.mapping_net(coeff) + self.f_3d_mean
        if blink_coeff is not None:
            face_3d[:, -1:] = blink_coeff
        return face_3d


class OcclusionAwareDenseMotion(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(OcclusionAwareDenseMotion, self).__init__()
        self.dense_motion_network = DenseMotionNetwork(num_kp=10,
                                                        num_channels=3,
                                                        block_expansion=sadtalker_cfg.MODEL.SCALE,
                                                        num_blocks=sadtalker_cfg.MODEL.NUM_MOTION_FRAMES - 1,
                                                        max_features=sadtalker_cfg.MODEL.MAX_FEATURES).to(device)
        checkpoint_path = os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'dense_motion.pth')
        self.load_dense_motion_network(checkpoint_path, device)

    def load_dense_motion_network(self, checkpoint_path, device):
        if os.path.exists(checkpoint_path):
            if checkpoint_path.endswith('safetensors'):
                checkpoint = safetensors.torch.load_file(checkpoint_path, device=device)
            else:
                checkpoint = torch.load(checkpoint_path, map_location=device)
            self.dense_motion_network.load_state_dict(checkpoint.get('dense_motion', {}))
        else:
            raise FileNotFoundError(f"Checkpoint file not found: {checkpoint_path}")

    def forward(self, kp_source, kp_driving, jacobian):
        sparse_motion = self.dense_motion_network(kp_source, kp_driving, jacobian)
        return sparse_motion


class FaceEnhancer(nn.Module):

    def __init__(self, sadtalker_cfg, device):
        super(FaceEnhancer, self).__init__()
        enhancer_name = sadtalker_cfg.MODEL.ENHANCER_NAME
        bg_upsampler = sadtalker_cfg.MODEL.BG_UPSAMPLER
        if enhancer_name == 'gfpgan':
            from gfpgan import GFPGANer
            self.face_enhancer = GFPGANer(model_path=os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR, 'GFPGANv1.4.pth'),
                                          upscale=1,
                                          arch='clean',
                                          channel_multiplier=2,
                                          bg_upsampler=bg_upsampler)
        elif enhancer_name == 'realesrgan':
            from realesrgan import RealESRGANer
            half = False if device == 'cpu' else sadtalker_cfg.MODEL.IS_HALF
            self.face_enhancer = RealESRGANer(scale=2,
                                               model_path=os.path.join(sadtalker_cfg.MODEL.CHECKPOINTS_DIR,
                                                                      'RealESRGAN_x2plus.pth'),
                                               tile=0,
                                               tile_pad=10,
                                               pre_pad=0,
                                               half=half,
                                               device=device)
        else:
            self.face_enhancer = None

    def forward(self, x):
        return self.face_enhancer.enhance(x, outscale=1)[0]