Spaces:
Running
Running
File size: 8,387 Bytes
1c817fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import time
import threading
import queue
import uuid
import unicodedata
import re
from deep_translator import GoogleTranslator
from duckduckgo_search import DDGS
import nltk
import torch
import torch.nn as nn
import math
nltk.download('punkt')
categories = ['News', 'Sports', 'Entertainment']
TEXT_GENERATION_RATE = 10
text_queue = queue.Queue()
reasoning_queue = queue.Queue()
feedback_queue = queue.Queue()
vocabulary = ["<PAD>", "<EOS>"]
word_to_index = {word: idx for idx, word in enumerate(vocabulary)}
seen_responses = set()
news_clf = None
class SimpleClassifier(nn.Module):
def __init__(self, vocab_size, num_classes, embedding_dim=128):
super(SimpleClassifier, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.fc = nn.Linear(embedding_dim, num_classes)
def forward(self, x):
embedded = self.embedding(x)
pooled = embedded.mean(dim=1)
out = self.fc(pooled)
return out
def tokenize_text(text):
return nltk.word_tokenize(text)
def update_vocabulary(tokens):
global vocabulary, word_to_index
for token in tokens:
if token not in word_to_index:
word_to_index[token] = len(vocabulary)
vocabulary.append(token)
def text_to_vector(text):
tokens = tokenize_text(text)
update_vocabulary(tokens)
indices = [word_to_index.get(token, 0) for token in tokens]
return torch.tensor(indices, dtype=torch.long)
def generate_and_queue_text(language):
global categories, text_queue
num_categories = len(categories)
num_texts_per_category = TEXT_GENERATION_RATE // (2 * num_categories)
while True:
for category in categories:
for _ in range(num_texts_per_category):
uid = uuid.uuid4()
base_text = f"Category: {category}. ID:{uid}"
try:
translator = GoogleTranslator(source='auto', target=language)
text = translator.translate(base_text)
except Exception:
text = base_text
processed_text = ''.join(c for c in unicodedata.normalize('NFKC', text) if c.isprintable())
text_queue.put((processed_text, category))
time.sleep(0)
def background_training():
global categories, news_clf, feedback_queue, vocabulary
if categories is None:
categories = ['DefaultCategory']
num_classes = len(categories)
learning_rate = 0.01
epochs = 1
if news_clf is None:
news_clf = SimpleClassifier(len(vocabulary), num_classes)
optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
criterion = nn.CrossEntropyLoss()
while True:
try:
feedback_item = feedback_queue.get(timeout=10)
if feedback_item:
input_text, generated_text = feedback_item
input_vector = text_to_vector(input_text)
if len(vocabulary) == 0:
vocabulary.extend(["<PAD>", "<EOS>"])
news_clf = SimpleClassifier(len(vocabulary), num_classes)
optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
if input_vector.size(0) != len(vocabulary) and len(vocabulary) > 0:
news_clf = SimpleClassifier(len(vocabulary), num_classes)
optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
input_vector = text_to_vector(input_text)
tokens = tokenize_text(input_text)
update_vocabulary(tokens)
tokens_indices = [word_to_index.get(word, 0) for word in tokens]
input_tensor = torch.tensor([tokens_indices], dtype=torch.long)
target_index = categories.index(generated_text) if generated_text in categories else 0
target_category_index = torch.tensor([target_index], dtype=torch.long)
if num_classes <= 1:
num_classes = 2
news_clf.fc = nn.Linear(128, num_classes)
for _ in range(epochs):
optimizer.zero_grad()
output = news_clf(input_tensor)
loss = criterion(output, target_category_index)
loss.backward()
optimizer.step()
feedback_queue.task_done()
except queue.Empty:
pass
except Exception:
time.sleep(5)
class ReasoningModel(nn.Module):
def __init__(self, vocab_size, embed_dim=128, hidden_dim=128):
super(ReasoningModel, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.rnn = nn.LSTM(embed_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, vocab_size)
def forward(self, x, hidden=None):
emb = self.embedding(x)
output, hidden = self.rnn(emb, hidden)
logits = self.fc(output)
return logits, hidden
def generate(self, input_seq, max_length=50, temperature=1.0):
self.eval()
tokens = input_seq.copy()
hidden = None
generated = []
for _ in range(max_length):
input_tensor = torch.tensor([tokens], dtype=torch.long)
logits, hidden = self.forward(input_tensor, hidden)
next_token_logits = logits[0, -1, :] / temperature
probabilities = torch.softmax(next_token_logits, dim=0)
next_token = torch.multinomial(probabilities, 1).item()
tokens.append(next_token)
generated.append(next_token)
if next_token == word_to_index.get("<EOS>"):
break
return generated
reasoning_model = ReasoningModel(len(vocabulary))
def perform_reasoning_stream(text_input, temperature=0.7, top_k=40, top_p=0.0, repetition_penalty=1.2):
tokens = tokenize_text(text_input)
update_vocabulary(tokens)
tokens_indices = [word_to_index.get(token, 0) for token in tokens]
generated_indices = reasoning_model.generate(tokens_indices, max_length=50, temperature=temperature)
for idx in generated_indices:
yield vocabulary[idx] + " "
yield "<END_STREAM>"
def background_reasoning_queue():
global reasoning_queue, seen_responses
while True:
try:
item = reasoning_queue.get(timeout=1)
if item is None:
reasoning_queue.task_done()
continue
text_input = item.get('text_input')
temperature = item.get('temperature', 0.7)
top_k = item.get('top_k', 40)
top_p = item.get('top_p', 0.0)
repetition_penalty = item.get('repetition_penalty', 1.2)
resp_queue = item.get('response_queue', queue.Queue())
if not text_input:
resp_queue.put({"error": "Empty text input received."})
reasoning_queue.task_done()
continue
generated_text_stream = perform_reasoning_stream(text_input, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty)
full_response = ""
for chunk in generated_text_stream:
if chunk == "<END_STREAM>":
break
full_response += chunk
cleaned_response = re.sub(r'\s+(?=[.,,。])', '', full_response.replace("<|endoftext|>", "")).strip()
if cleaned_response in seen_responses:
final_response = "**Response is repetitive. Please try again or rephrase your query.**"
resp_queue.put({"text": final_response})
else:
seen_responses.add(cleaned_response)
final_response = cleaned_response
resp_queue.put({"text": final_response})
reasoning_queue.task_done()
except queue.Empty:
pass
except Exception as e:
try:
resp_queue.put({"error": str(e)})
except Exception:
pass
if reasoning_queue and not reasoning_queue.empty():
reasoning_queue.task_done()
|