File size: 8,387 Bytes
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import time
import threading
import queue
import uuid
import unicodedata
import re
from deep_translator import GoogleTranslator
from duckduckgo_search import DDGS
import nltk
import torch
import torch.nn as nn
import math

nltk.download('punkt')

categories = ['News', 'Sports', 'Entertainment']
TEXT_GENERATION_RATE = 10
text_queue = queue.Queue()
reasoning_queue = queue.Queue()
feedback_queue = queue.Queue()
vocabulary = ["<PAD>", "<EOS>"]
word_to_index = {word: idx for idx, word in enumerate(vocabulary)}
seen_responses = set()
news_clf = None

class SimpleClassifier(nn.Module):
    def __init__(self, vocab_size, num_classes, embedding_dim=128):
        super(SimpleClassifier, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.fc = nn.Linear(embedding_dim, num_classes)
    def forward(self, x):
        embedded = self.embedding(x)
        pooled = embedded.mean(dim=1)
        out = self.fc(pooled)
        return out

def tokenize_text(text):
    return nltk.word_tokenize(text)

def update_vocabulary(tokens):
    global vocabulary, word_to_index
    for token in tokens:
        if token not in word_to_index:
            word_to_index[token] = len(vocabulary)
            vocabulary.append(token)

def text_to_vector(text):
    tokens = tokenize_text(text)
    update_vocabulary(tokens)
    indices = [word_to_index.get(token, 0) for token in tokens]
    return torch.tensor(indices, dtype=torch.long)

def generate_and_queue_text(language):
    global categories, text_queue
    num_categories = len(categories)
    num_texts_per_category = TEXT_GENERATION_RATE // (2 * num_categories)
    while True:
        for category in categories:
            for _ in range(num_texts_per_category):
                uid = uuid.uuid4()
                base_text = f"Category: {category}. ID:{uid}"
                try:
                    translator = GoogleTranslator(source='auto', target=language)
                    text = translator.translate(base_text)
                except Exception:
                    text = base_text
                processed_text = ''.join(c for c in unicodedata.normalize('NFKC', text) if c.isprintable())
                text_queue.put((processed_text, category))
                time.sleep(0)

def background_training():
    global categories, news_clf, feedback_queue, vocabulary
    if categories is None:
        categories = ['DefaultCategory']
    num_classes = len(categories)
    learning_rate = 0.01
    epochs = 1
    if news_clf is None:
        news_clf = SimpleClassifier(len(vocabulary), num_classes)
    optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
    criterion = nn.CrossEntropyLoss()
    while True:
        try:
            feedback_item = feedback_queue.get(timeout=10)
            if feedback_item:
                input_text, generated_text = feedback_item
                input_vector = text_to_vector(input_text)
                if len(vocabulary) == 0:
                    vocabulary.extend(["<PAD>", "<EOS>"])
                    news_clf = SimpleClassifier(len(vocabulary), num_classes)
                    optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
                if input_vector.size(0) != len(vocabulary) and len(vocabulary) > 0:
                    news_clf = SimpleClassifier(len(vocabulary), num_classes)
                    optimizer = torch.optim.SGD(news_clf.parameters(), lr=learning_rate)
                    input_vector = text_to_vector(input_text)
                tokens = tokenize_text(input_text)
                update_vocabulary(tokens)
                tokens_indices = [word_to_index.get(word, 0) for word in tokens]
                input_tensor = torch.tensor([tokens_indices], dtype=torch.long)
                target_index = categories.index(generated_text) if generated_text in categories else 0
                target_category_index = torch.tensor([target_index], dtype=torch.long)
                if num_classes <= 1:
                    num_classes = 2
                    news_clf.fc = nn.Linear(128, num_classes)
                for _ in range(epochs):
                    optimizer.zero_grad()
                    output = news_clf(input_tensor)
                    loss = criterion(output, target_category_index)
                    loss.backward()
                    optimizer.step()
                feedback_queue.task_done()
        except queue.Empty:
            pass
        except Exception:
            time.sleep(5)

class ReasoningModel(nn.Module):
    def __init__(self, vocab_size, embed_dim=128, hidden_dim=128):
        super(ReasoningModel, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.rnn = nn.LSTM(embed_dim, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, vocab_size)
    def forward(self, x, hidden=None):
        emb = self.embedding(x)
        output, hidden = self.rnn(emb, hidden)
        logits = self.fc(output)
        return logits, hidden
    def generate(self, input_seq, max_length=50, temperature=1.0):
        self.eval()
        tokens = input_seq.copy()
        hidden = None
        generated = []
        for _ in range(max_length):
            input_tensor = torch.tensor([tokens], dtype=torch.long)
            logits, hidden = self.forward(input_tensor, hidden)
            next_token_logits = logits[0, -1, :] / temperature
            probabilities = torch.softmax(next_token_logits, dim=0)
            next_token = torch.multinomial(probabilities, 1).item()
            tokens.append(next_token)
            generated.append(next_token)
            if next_token == word_to_index.get("<EOS>"):
                break
        return generated

reasoning_model = ReasoningModel(len(vocabulary))

def perform_reasoning_stream(text_input, temperature=0.7, top_k=40, top_p=0.0, repetition_penalty=1.2):
    tokens = tokenize_text(text_input)
    update_vocabulary(tokens)
    tokens_indices = [word_to_index.get(token, 0) for token in tokens]
    generated_indices = reasoning_model.generate(tokens_indices, max_length=50, temperature=temperature)
    for idx in generated_indices:
        yield vocabulary[idx] + " "
    yield "<END_STREAM>"

def background_reasoning_queue():
    global reasoning_queue, seen_responses
    while True:
        try:
            item = reasoning_queue.get(timeout=1)
            if item is None:
                reasoning_queue.task_done()
                continue
            text_input = item.get('text_input')
            temperature = item.get('temperature', 0.7)
            top_k = item.get('top_k', 40)
            top_p = item.get('top_p', 0.0)
            repetition_penalty = item.get('repetition_penalty', 1.2)
            resp_queue = item.get('response_queue', queue.Queue())
            if not text_input:
                resp_queue.put({"error": "Empty text input received."})
                reasoning_queue.task_done()
                continue
            generated_text_stream = perform_reasoning_stream(text_input, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty)
            full_response = ""
            for chunk in generated_text_stream:
                if chunk == "<END_STREAM>":
                    break
                full_response += chunk
            cleaned_response = re.sub(r'\s+(?=[.,,。])', '', full_response.replace("<|endoftext|>", "")).strip()
            if cleaned_response in seen_responses:
                final_response = "**Response is repetitive. Please try again or rephrase your query.**"
                resp_queue.put({"text": final_response})
            else:
                seen_responses.add(cleaned_response)
                final_response = cleaned_response
                resp_queue.put({"text": final_response})
            reasoning_queue.task_done()
        except queue.Empty:
            pass
        except Exception as e:
            try:
                resp_queue.put({"error": str(e)})
            except Exception:
                pass
            if reasoning_queue and not reasoning_queue.empty():
                reasoning_queue.task_done()