John6666 commited on
Commit
3f9b6d3
Β·
verified Β·
1 Parent(s): e4204a6

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +18 -18
  2. app.py +279 -277
README.md CHANGED
@@ -1,19 +1,19 @@
1
- ---
2
- title: 'FABRIC: Personalizing Diffusion Models with Iterative Feedback'
3
- emoji: 🎨
4
- colorFrom: blue
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 3.50.2
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Demo for Arxiv paper at https://arxiv.org/abs/2307.10159
14
-
15
- Official code: https://github.com/sd-fabric/fabric
16
-
17
- Official AUTOMATIC1111 plugin: https://github.com/dvruette/sd-webui-fabric
18
-
19
  Unofficial ComfyUI node: https://github.com/ssitu/ComfyUI_fabric
 
1
+ ---
2
+ title: 'FABRIC: Personalizing Diffusion Models with Iterative Feedback'
3
+ emoji: 🎨
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.41.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Demo for Arxiv paper at https://arxiv.org/abs/2307.10159
14
+
15
+ Official code: https://github.com/sd-fabric/fabric
16
+
17
+ Official AUTOMATIC1111 plugin: https://github.com/dvruette/sd-webui-fabric
18
+
19
  Unofficial ComfyUI node: https://github.com/ssitu/ComfyUI_fabric
app.py CHANGED
@@ -1,278 +1,280 @@
1
- import functools
2
- import random
3
- import logging
4
-
5
- import gradio as gr
6
- import torch
7
-
8
- from fabric.generator import AttentionBasedGenerator
9
-
10
- logging.basicConfig(level=logging.INFO)
11
- logger = logging.getLogger(__name__)
12
-
13
-
14
- #model_name = "dreamlike-art/dreamlike-photoreal-2.0"
15
- model_name = ""
16
- model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"
17
-
18
- class GeneratorWrapper:
19
- def __init__(self, model_name=None, model_ckpt=None):
20
- self.model_name = model_name if model_name else None
21
- self.model_ckpt = model_ckpt if model_ckpt else None
22
- self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
23
- self.device = "cuda" if torch.cuda.is_available() else "cpu"
24
-
25
- self.reload()
26
-
27
- def generate(self, *args, **kwargs):
28
- if not hasattr(self, "generator"):
29
- self.reload()
30
- return self.generator.generate(*args, **kwargs)
31
-
32
- def to(self, device):
33
- return self.generator.to(device)
34
-
35
- def reload(self):
36
- if hasattr(self, "generator"):
37
- del self.generator
38
- if self.device == "cuda":
39
- torch.cuda.empty_cache()
40
- self.generator = AttentionBasedGenerator(
41
- model_name=self.model_name,
42
- model_ckpt=self.model_ckpt,
43
- torch_dtype=self.dtype,
44
- ).to(self.device)
45
-
46
- generator = GeneratorWrapper(model_name, model_ckpt)
47
-
48
-
49
- css = """
50
- .btn-green {
51
- background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
52
- border-color: #22c55e !important;
53
- color: #166534 !important;
54
- }
55
- .btn-green:hover {
56
- background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
57
- }
58
- .btn-red {
59
- background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
60
- border-color: #fb7185 !important;
61
- color: #9f1239 !important;
62
- }
63
- .btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}
64
-
65
- /*****/
66
-
67
- .dark .btn-green {
68
- background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
69
- border-color: #047857 !important;
70
- color: #ffffff !important;
71
- }
72
- .dark .btn-green:hover {
73
- background-image: linear-gradient(to bottom right, #047857, #047857) !important;
74
- }
75
- .dark .btn-red {
76
- background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
77
- border-color: #be123c !important;
78
- color: #ffffff !important;
79
- }
80
- .dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
81
- """
82
-
83
- def generate_fn(
84
- feedback_enabled,
85
- max_feedback_imgs,
86
- prompt,
87
- neg_prompt,
88
- liked,
89
- disliked,
90
- denoising_steps,
91
- guidance_scale,
92
- feedback_start,
93
- feedback_end,
94
- min_weight,
95
- max_weight,
96
- neg_scale,
97
- batch_size,
98
- seed,
99
- progress=gr.Progress(track_tqdm=True),
100
- ):
101
- try:
102
- if seed < 0:
103
- seed = random.randint(1,9999999999999999) #16 digits is an arbitrary limit
104
-
105
- max_feedback_imgs = max(0, int(max_feedback_imgs))
106
- total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)
107
-
108
- if not feedback_enabled:
109
- liked = []
110
- disliked = []
111
- elif total_images > max_feedback_imgs:
112
- if liked and disliked:
113
- max_disliked = min(len(disliked), max_feedback_imgs // 2)
114
- max_liked = min(len(liked), max_feedback_imgs - max_disliked)
115
- if max_liked > len(liked):
116
- max_disliked = max_feedback_imgs - max_liked
117
- liked = liked[-max_liked:]
118
- disliked = disliked[-max_disliked:]
119
- elif liked:
120
- liked = liked[-max_feedback_imgs:]
121
- disliked = []
122
- else:
123
- liked = []
124
- disliked = disliked[-max_feedback_imgs:]
125
- # else: keep all feedback images
126
-
127
- logger.info(f"Generate images: {prompt=}, {neg_prompt=}, {len(liked)=}, {len(disliked)=}, {max_feedback_imgs=}, {batch_size=}, {seed=}")
128
- logger.info(f"Params: {denoising_steps=}, {guidance_scale=}, {feedback_start=}, {feedback_end=}, {min_weight=}, {max_weight=}, {neg_scale=}")
129
-
130
- generate_kwargs = {
131
- "prompt": prompt,
132
- "negative_prompt": neg_prompt,
133
- "liked": liked,
134
- "disliked": disliked,
135
- "denoising_steps": denoising_steps,
136
- "guidance_scale": guidance_scale,
137
- "feedback_start": feedback_start,
138
- "feedback_end": feedback_end,
139
- "min_weight": min_weight,
140
- "max_weight": max_weight,
141
- "neg_scale": neg_scale,
142
- "seed": seed,
143
- "n_images": batch_size,
144
- }
145
-
146
- try:
147
- images = generator.generate(**generate_kwargs)
148
- except RuntimeError as err:
149
- if 'out of memory' in str(err):
150
- generator.reload()
151
- logger.info(f"Ran out of memory trying to generate {batch_size=} images with {len(liked)=} and {len(disliked)=} feedback images.")
152
- raise
153
- return [(img, f"Image {i+1}") for i, img in enumerate(images)], images, seed
154
- except Exception as err:
155
- logger.error(err)
156
- raise gr.Error(str(err))
157
-
158
-
159
- def add_img_from_list(i, curr_imgs, all_imgs):
160
- if all_imgs is None:
161
- all_imgs = []
162
- if i >= 0 and i < len(curr_imgs):
163
- all_imgs.append(curr_imgs[i])
164
- return all_imgs, all_imgs # return (gallery, state)
165
-
166
- def add_img(img, all_imgs):
167
- if all_imgs is None:
168
- all_imgs = []
169
- all_imgs.append(img)
170
- return None, all_imgs, all_imgs
171
-
172
- def remove_img_from_list(event: gr.SelectData, imgs):
173
- if event.index >= 0 and event.index < len(imgs):
174
- imgs.pop(event.index)
175
- return imgs, imgs
176
-
177
- def duplicate_seed_value(seed): #I don't like the progress bar showing on the previous seed box and this is how I hide it
178
- return seed
179
-
180
- with gr.Blocks(css=css) as demo:
181
-
182
- liked_imgs = gr.State([])
183
- disliked_imgs = gr.State([])
184
- curr_imgs = gr.State([])
185
-
186
- with gr.Row():
187
- with gr.Column(scale=100):
188
- prompt = gr.Textbox(label="Prompt")
189
- neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
190
- submit_btn = gr.Button("Generate", variant="primary", min_width="96px")
191
-
192
- with gr.Row(equal_height=False):
193
- with gr.Column():
194
- denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
195
- guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
196
- batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False)
197
- seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
198
- max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
199
- feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)
200
-
201
- with gr.Accordion("Liked Images", open=True):
202
- liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image")
203
- like_gallery = gr.Gallery(label="πŸ‘ Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
204
- clear_liked_btn = gr.Button("Clear likes")
205
-
206
- with gr.Accordion("Disliked Images", open=True):
207
- disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image")
208
- dislike_gallery = gr.Gallery(label="πŸ‘Ž Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
209
- clear_disliked_btn = gr.Button("Clear dislikes")
210
-
211
- with gr.Accordion("Feedback parameters", open=False):
212
- feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
213
- feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
214
- feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
215
- feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
216
- feedback_neg_scale = gr.Slider(0.0, 10.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")
217
-
218
- with gr.Column():
219
- gallery = gr.Gallery(label="Generated images")
220
-
221
- like_btns = []
222
- dislike_btns = []
223
- with gr.Row():
224
- for i in range(0, 2):
225
- like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
226
- like_btns.append(like_btn)
227
- with gr.Row():
228
- for i in range(2, 4):
229
- like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
230
- like_btns.append(like_btn)
231
- with gr.Row():
232
- for i in range(0, 2):
233
- dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
234
- dislike_btns.append(dislike_btn)
235
- with gr.Row():
236
- for i in range(2, 4):
237
- dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
238
- dislike_btns.append(dislike_btn)
239
-
240
- prev_seed = gr.Number(-1, label="Previous seed", interactive=False)
241
- prev_seed_hid = gr.Number(-1, visible=False)
242
-
243
- generate_params = [
244
- feedback_enabled,
245
- max_feedback_imgs,
246
- prompt,
247
- neg_prompt,
248
- liked_imgs,
249
- disliked_imgs,
250
- denoising_steps,
251
- guidance_scale,
252
- feedback_start,
253
- feedback_end,
254
- feedback_min_weight,
255
- feedback_max_weight,
256
- feedback_neg_scale,
257
- batch_size,
258
- seed,
259
- ]
260
- submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs, prev_seed_hid], queue=True)
261
- prev_seed_hid.change(duplicate_seed_value, prev_seed_hid, prev_seed, queue=False)
262
-
263
- for i, like_btn in enumerate(like_btns):
264
- like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
265
- for i, dislike_btn in enumerate(dislike_btns):
266
- dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
267
-
268
- like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
269
- dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
270
-
271
- liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
272
- disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)
273
-
274
- clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False)
275
- clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False)
276
-
277
- demo.queue(1)
 
 
278
  demo.launch(debug=True)
 
1
+ import spaces
2
+ import functools
3
+ import random
4
+ import logging
5
+
6
+ import gradio as gr
7
+ import torch
8
+
9
+ from fabric.generator import AttentionBasedGenerator
10
+
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ #model_name = "dreamlike-art/dreamlike-photoreal-2.0"
16
+ model_name = ""
17
+ model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"
18
+
19
+ class GeneratorWrapper:
20
+ def __init__(self, model_name=None, model_ckpt=None):
21
+ self.model_name = model_name if model_name else None
22
+ self.model_ckpt = model_ckpt if model_ckpt else None
23
+ self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
24
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
25
+
26
+ self.reload()
27
+
28
+ def generate(self, *args, **kwargs):
29
+ if not hasattr(self, "generator"):
30
+ self.reload()
31
+ return self.generator.generate(*args, **kwargs)
32
+
33
+ def to(self, device):
34
+ return self.generator.to(device)
35
+
36
+ def reload(self):
37
+ if hasattr(self, "generator"):
38
+ del self.generator
39
+ if self.device == "cuda":
40
+ torch.cuda.empty_cache()
41
+ self.generator = AttentionBasedGenerator(
42
+ model_name=self.model_name,
43
+ model_ckpt=self.model_ckpt,
44
+ torch_dtype=self.dtype,
45
+ ).to(self.device)
46
+
47
+ generator = GeneratorWrapper(model_name, model_ckpt)
48
+
49
+
50
+ css = """
51
+ .btn-green {
52
+ background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
53
+ border-color: #22c55e !important;
54
+ color: #166534 !important;
55
+ }
56
+ .btn-green:hover {
57
+ background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
58
+ }
59
+ .btn-red {
60
+ background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
61
+ border-color: #fb7185 !important;
62
+ color: #9f1239 !important;
63
+ }
64
+ .btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}
65
+
66
+ /*****/
67
+
68
+ .dark .btn-green {
69
+ background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
70
+ border-color: #047857 !important;
71
+ color: #ffffff !important;
72
+ }
73
+ .dark .btn-green:hover {
74
+ background-image: linear-gradient(to bottom right, #047857, #047857) !important;
75
+ }
76
+ .dark .btn-red {
77
+ background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
78
+ border-color: #be123c !important;
79
+ color: #ffffff !important;
80
+ }
81
+ .dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
82
+ """
83
+
84
+ @spaces.GPU(duration=59)
85
+ def generate_fn(
86
+ feedback_enabled,
87
+ max_feedback_imgs,
88
+ prompt,
89
+ neg_prompt,
90
+ liked,
91
+ disliked,
92
+ denoising_steps,
93
+ guidance_scale,
94
+ feedback_start,
95
+ feedback_end,
96
+ min_weight,
97
+ max_weight,
98
+ neg_scale,
99
+ batch_size,
100
+ seed,
101
+ progress=gr.Progress(track_tqdm=True),
102
+ ):
103
+ try:
104
+ if seed < 0:
105
+ seed = random.randint(1,9999999999999999) #16 digits is an arbitrary limit
106
+
107
+ max_feedback_imgs = max(0, int(max_feedback_imgs))
108
+ total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)
109
+
110
+ if not feedback_enabled:
111
+ liked = []
112
+ disliked = []
113
+ elif total_images > max_feedback_imgs:
114
+ if liked and disliked:
115
+ max_disliked = min(len(disliked), max_feedback_imgs // 2)
116
+ max_liked = min(len(liked), max_feedback_imgs - max_disliked)
117
+ if max_liked > len(liked):
118
+ max_disliked = max_feedback_imgs - max_liked
119
+ liked = liked[-max_liked:]
120
+ disliked = disliked[-max_disliked:]
121
+ elif liked:
122
+ liked = liked[-max_feedback_imgs:]
123
+ disliked = []
124
+ else:
125
+ liked = []
126
+ disliked = disliked[-max_feedback_imgs:]
127
+ # else: keep all feedback images
128
+
129
+ logger.info(f"Generate images: {prompt=}, {neg_prompt=}, {len(liked)=}, {len(disliked)=}, {max_feedback_imgs=}, {batch_size=}, {seed=}")
130
+ logger.info(f"Params: {denoising_steps=}, {guidance_scale=}, {feedback_start=}, {feedback_end=}, {min_weight=}, {max_weight=}, {neg_scale=}")
131
+
132
+ generate_kwargs = {
133
+ "prompt": prompt,
134
+ "negative_prompt": neg_prompt,
135
+ "liked": liked,
136
+ "disliked": disliked,
137
+ "denoising_steps": denoising_steps,
138
+ "guidance_scale": guidance_scale,
139
+ "feedback_start": feedback_start,
140
+ "feedback_end": feedback_end,
141
+ "min_weight": min_weight,
142
+ "max_weight": max_weight,
143
+ "neg_scale": neg_scale,
144
+ "seed": seed,
145
+ "n_images": batch_size,
146
+ }
147
+
148
+ try:
149
+ images = generator.generate(**generate_kwargs)
150
+ except RuntimeError as err:
151
+ if 'out of memory' in str(err):
152
+ generator.reload()
153
+ logger.info(f"Ran out of memory trying to generate {batch_size=} images with {len(liked)=} and {len(disliked)=} feedback images.")
154
+ raise
155
+ return [(img, f"Image {i+1}") for i, img in enumerate(images)], images, seed
156
+ except Exception as err:
157
+ logger.error(err)
158
+ raise gr.Error(str(err))
159
+
160
+
161
+ def add_img_from_list(i, curr_imgs, all_imgs):
162
+ if all_imgs is None:
163
+ all_imgs = []
164
+ if i >= 0 and i < len(curr_imgs):
165
+ all_imgs.append(curr_imgs[i])
166
+ return all_imgs, all_imgs # return (gallery, state)
167
+
168
+ def add_img(img, all_imgs):
169
+ if all_imgs is None:
170
+ all_imgs = []
171
+ all_imgs.append(img)
172
+ return None, all_imgs, all_imgs
173
+
174
+ def remove_img_from_list(event: gr.SelectData, imgs):
175
+ if event.index >= 0 and event.index < len(imgs):
176
+ imgs.pop(event.index)
177
+ return imgs, imgs
178
+
179
+ def duplicate_seed_value(seed): #I don't like the progress bar showing on the previous seed box and this is how I hide it
180
+ return seed
181
+
182
+ with gr.Blocks(css=css) as demo:
183
+
184
+ liked_imgs = gr.State([])
185
+ disliked_imgs = gr.State([])
186
+ curr_imgs = gr.State([])
187
+
188
+ with gr.Row():
189
+ with gr.Column(scale=100):
190
+ prompt = gr.Textbox(label="Prompt")
191
+ neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
192
+ submit_btn = gr.Button("Generate", variant="primary", min_width="96px")
193
+
194
+ with gr.Row(equal_height=False):
195
+ with gr.Column():
196
+ denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
197
+ guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
198
+ batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False)
199
+ seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
200
+ max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
201
+ feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)
202
+
203
+ with gr.Accordion("Liked Images", open=True):
204
+ liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image")
205
+ like_gallery = gr.Gallery(label="πŸ‘ Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
206
+ clear_liked_btn = gr.Button("Clear likes")
207
+
208
+ with gr.Accordion("Disliked Images", open=True):
209
+ disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image")
210
+ dislike_gallery = gr.Gallery(label="πŸ‘Ž Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
211
+ clear_disliked_btn = gr.Button("Clear dislikes")
212
+
213
+ with gr.Accordion("Feedback parameters", open=False):
214
+ feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
215
+ feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
216
+ feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
217
+ feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
218
+ feedback_neg_scale = gr.Slider(0.0, 10.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")
219
+
220
+ with gr.Column():
221
+ gallery = gr.Gallery(label="Generated images")
222
+
223
+ like_btns = []
224
+ dislike_btns = []
225
+ with gr.Row():
226
+ for i in range(0, 2):
227
+ like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
228
+ like_btns.append(like_btn)
229
+ with gr.Row():
230
+ for i in range(2, 4):
231
+ like_btn = gr.Button(f"πŸ‘ Image {i+1}", elem_classes="btn-green")
232
+ like_btns.append(like_btn)
233
+ with gr.Row():
234
+ for i in range(0, 2):
235
+ dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
236
+ dislike_btns.append(dislike_btn)
237
+ with gr.Row():
238
+ for i in range(2, 4):
239
+ dislike_btn = gr.Button(f"πŸ‘Ž Image {i+1}", elem_classes="btn-red")
240
+ dislike_btns.append(dislike_btn)
241
+
242
+ prev_seed = gr.Number(-1, label="Previous seed", interactive=False)
243
+ prev_seed_hid = gr.Number(-1, visible=False)
244
+
245
+ generate_params = [
246
+ feedback_enabled,
247
+ max_feedback_imgs,
248
+ prompt,
249
+ neg_prompt,
250
+ liked_imgs,
251
+ disliked_imgs,
252
+ denoising_steps,
253
+ guidance_scale,
254
+ feedback_start,
255
+ feedback_end,
256
+ feedback_min_weight,
257
+ feedback_max_weight,
258
+ feedback_neg_scale,
259
+ batch_size,
260
+ seed,
261
+ ]
262
+ submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs, prev_seed_hid], queue=True)
263
+ prev_seed_hid.change(duplicate_seed_value, prev_seed_hid, prev_seed, queue=False)
264
+
265
+ for i, like_btn in enumerate(like_btns):
266
+ like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
267
+ for i, dislike_btn in enumerate(dislike_btns):
268
+ dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
269
+
270
+ like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
271
+ dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
272
+
273
+ liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
274
+ disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)
275
+
276
+ clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False)
277
+ clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False)
278
+
279
+ demo.queue()
280
  demo.launch(debug=True)