|
import spaces
|
|
import functools
|
|
import random
|
|
import logging
|
|
|
|
import gradio as gr
|
|
import torch
|
|
|
|
from fabric.generator import AttentionBasedGenerator
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
model_name = ""
|
|
model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"
|
|
|
|
class GeneratorWrapper:
|
|
def __init__(self, model_name=None, model_ckpt=None):
|
|
self.model_name = model_name if model_name else None
|
|
self.model_ckpt = model_ckpt if model_ckpt else None
|
|
self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
self.reload()
|
|
|
|
def generate(self, *args, **kwargs):
|
|
if not hasattr(self, "generator"):
|
|
self.reload()
|
|
return self.generator.generate(*args, **kwargs)
|
|
|
|
def to(self, device):
|
|
return self.generator.to(device)
|
|
|
|
def reload(self):
|
|
if hasattr(self, "generator"):
|
|
del self.generator
|
|
if self.device == "cuda":
|
|
torch.cuda.empty_cache()
|
|
self.generator = AttentionBasedGenerator(
|
|
model_name=self.model_name,
|
|
model_ckpt=self.model_ckpt,
|
|
torch_dtype=self.dtype,
|
|
).to(self.device)
|
|
|
|
generator = GeneratorWrapper(model_name, model_ckpt)
|
|
|
|
|
|
css = """
|
|
.btn-green {
|
|
background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
|
|
border-color: #22c55e !important;
|
|
color: #166534 !important;
|
|
}
|
|
.btn-green:hover {
|
|
background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
|
|
}
|
|
.btn-red {
|
|
background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
|
|
border-color: #fb7185 !important;
|
|
color: #9f1239 !important;
|
|
}
|
|
.btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}
|
|
|
|
/*****/
|
|
|
|
.dark .btn-green {
|
|
background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
|
|
border-color: #047857 !important;
|
|
color: #ffffff !important;
|
|
}
|
|
.dark .btn-green:hover {
|
|
background-image: linear-gradient(to bottom right, #047857, #047857) !important;
|
|
}
|
|
.dark .btn-red {
|
|
background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
|
|
border-color: #be123c !important;
|
|
color: #ffffff !important;
|
|
}
|
|
.dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
|
|
"""
|
|
|
|
@spaces.GPU(duration=59)
|
|
def generate_fn(
|
|
feedback_enabled,
|
|
max_feedback_imgs,
|
|
prompt,
|
|
neg_prompt,
|
|
liked,
|
|
disliked,
|
|
denoising_steps,
|
|
guidance_scale,
|
|
feedback_start,
|
|
feedback_end,
|
|
min_weight,
|
|
max_weight,
|
|
neg_scale,
|
|
batch_size,
|
|
seed,
|
|
progress=gr.Progress(track_tqdm=True),
|
|
):
|
|
try:
|
|
if seed < 0:
|
|
seed = random.randint(1,9999999999999999)
|
|
|
|
max_feedback_imgs = max(0, int(max_feedback_imgs))
|
|
total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)
|
|
|
|
if not feedback_enabled:
|
|
liked = []
|
|
disliked = []
|
|
elif total_images > max_feedback_imgs:
|
|
if liked and disliked:
|
|
max_disliked = min(len(disliked), max_feedback_imgs // 2)
|
|
max_liked = min(len(liked), max_feedback_imgs - max_disliked)
|
|
if max_liked > len(liked):
|
|
max_disliked = max_feedback_imgs - max_liked
|
|
liked = liked[-max_liked:]
|
|
disliked = disliked[-max_disliked:]
|
|
elif liked:
|
|
liked = liked[-max_feedback_imgs:]
|
|
disliked = []
|
|
else:
|
|
liked = []
|
|
disliked = disliked[-max_feedback_imgs:]
|
|
|
|
|
|
logger.info(f"Generate images: {prompt=}, {neg_prompt=}, {len(liked)=}, {len(disliked)=}, {max_feedback_imgs=}, {batch_size=}, {seed=}")
|
|
logger.info(f"Params: {denoising_steps=}, {guidance_scale=}, {feedback_start=}, {feedback_end=}, {min_weight=}, {max_weight=}, {neg_scale=}")
|
|
|
|
generate_kwargs = {
|
|
"prompt": prompt,
|
|
"negative_prompt": neg_prompt,
|
|
"liked": liked,
|
|
"disliked": disliked,
|
|
"denoising_steps": denoising_steps,
|
|
"guidance_scale": guidance_scale,
|
|
"feedback_start": feedback_start,
|
|
"feedback_end": feedback_end,
|
|
"min_weight": min_weight,
|
|
"max_weight": max_weight,
|
|
"neg_scale": neg_scale,
|
|
"seed": seed,
|
|
"n_images": batch_size,
|
|
}
|
|
|
|
try:
|
|
images = generator.generate(**generate_kwargs)
|
|
except RuntimeError as err:
|
|
if 'out of memory' in str(err):
|
|
generator.reload()
|
|
logger.info(f"Ran out of memory trying to generate {batch_size=} images with {len(liked)=} and {len(disliked)=} feedback images.")
|
|
raise
|
|
return [(img, f"Image {i+1}") for i, img in enumerate(images)], images, seed
|
|
except Exception as err:
|
|
logger.error(err)
|
|
raise gr.Error(str(err))
|
|
|
|
|
|
def add_img_from_list(i, curr_imgs, all_imgs):
|
|
if all_imgs is None:
|
|
all_imgs = []
|
|
if i >= 0 and i < len(curr_imgs):
|
|
all_imgs.append(curr_imgs[i])
|
|
return all_imgs, all_imgs
|
|
|
|
def add_img(img, all_imgs):
|
|
if all_imgs is None:
|
|
all_imgs = []
|
|
all_imgs.append(img)
|
|
return None, all_imgs, all_imgs
|
|
|
|
def remove_img_from_list(event: gr.SelectData, imgs):
|
|
if event.index >= 0 and event.index < len(imgs):
|
|
imgs.pop(event.index)
|
|
return imgs, imgs
|
|
|
|
def duplicate_seed_value(seed):
|
|
return seed
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
|
|
liked_imgs = gr.State([])
|
|
disliked_imgs = gr.State([])
|
|
curr_imgs = gr.State([])
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=100):
|
|
prompt = gr.Textbox(label="Prompt")
|
|
neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
|
|
submit_btn = gr.Button("Generate", variant="primary", min_width="96px")
|
|
|
|
with gr.Row(equal_height=False):
|
|
with gr.Column():
|
|
denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
|
|
guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
|
|
batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False)
|
|
seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
|
|
max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
|
|
feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)
|
|
|
|
with gr.Accordion("Liked Images", open=True):
|
|
liked_img_input = gr.Image(type="pil", height=128, label="Upload liked image")
|
|
like_gallery = gr.Gallery(label="π Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
|
|
clear_liked_btn = gr.Button("Clear likes")
|
|
|
|
with gr.Accordion("Disliked Images", open=True):
|
|
disliked_img_input = gr.Image(type="pil", height=128, label="Upload disliked image")
|
|
dislike_gallery = gr.Gallery(label="π Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
|
|
clear_disliked_btn = gr.Button("Clear dislikes")
|
|
|
|
with gr.Accordion("Feedback parameters", open=False):
|
|
feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
|
|
feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
|
|
feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
|
|
feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
|
|
feedback_neg_scale = gr.Slider(0.0, 10.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")
|
|
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images")
|
|
|
|
like_btns = []
|
|
dislike_btns = []
|
|
with gr.Row():
|
|
for i in range(0, 2):
|
|
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green")
|
|
like_btns.append(like_btn)
|
|
with gr.Row():
|
|
for i in range(2, 4):
|
|
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green")
|
|
like_btns.append(like_btn)
|
|
with gr.Row():
|
|
for i in range(0, 2):
|
|
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red")
|
|
dislike_btns.append(dislike_btn)
|
|
with gr.Row():
|
|
for i in range(2, 4):
|
|
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red")
|
|
dislike_btns.append(dislike_btn)
|
|
|
|
prev_seed = gr.Number(-1, label="Previous seed", interactive=False)
|
|
prev_seed_hid = gr.Number(-1, visible=False)
|
|
|
|
generate_params = [
|
|
feedback_enabled,
|
|
max_feedback_imgs,
|
|
prompt,
|
|
neg_prompt,
|
|
liked_imgs,
|
|
disliked_imgs,
|
|
denoising_steps,
|
|
guidance_scale,
|
|
feedback_start,
|
|
feedback_end,
|
|
feedback_min_weight,
|
|
feedback_max_weight,
|
|
feedback_neg_scale,
|
|
batch_size,
|
|
seed,
|
|
]
|
|
submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs, prev_seed_hid], queue=True)
|
|
prev_seed_hid.change(duplicate_seed_value, prev_seed_hid, prev_seed, queue=False)
|
|
|
|
for i, like_btn in enumerate(like_btns):
|
|
like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
|
|
for i, dislike_btn in enumerate(dislike_btns):
|
|
dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
|
|
|
|
like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
|
|
dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
|
|
|
|
liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
|
|
disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)
|
|
|
|
clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False)
|
|
clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False)
|
|
|
|
demo.queue()
|
|
demo.launch(debug=True) |