import os import json import asyncio import random # --- OpenAI --- from openai import AsyncOpenAI, APIError # --- Google Gemini --- from google import genai from google.genai import types # --- Mistral AI --- from mistralai import Mistral # --- Poke-Env --- from poke_env.player import Player from poke_env.environment.battle import Battle from poke_env.environment.move import Move from poke_env.environment.pokemon import Pokemon from typing import Optional, Dict, Any, Union # --- Helper Function & Base Class --- def normalize_name(name: str) -> str: """Lowercase and remove non-alphanumeric characters.""" return "".join(filter(str.isalnum, name)).lower() STANDARD_TOOL_SCHEMA = { "choose_move": { "name": "choose_move", "description": "Selects and executes an available attacking or status move.", "parameters": { "type": "object", "properties": { "move_name": { "type": "string", "description": "The exact name or ID (e.g., 'thunderbolt', 'swordsdance') of the move to use. Must be one of the available moves.", }, }, "required": ["move_name"], }, }, "choose_switch": { "name": "choose_switch", "description": "Selects an available Pokémon from the bench to switch into.", "parameters": { "type": "object", "properties": { "pokemon_name": { "type": "string", "description": "The exact name of the Pokémon species to switch to (e.g., 'Pikachu', 'Charizard'). Must be one of the available switches.", }, }, "required": ["pokemon_name"], }, }, } class LLMAgentBase(Player): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.standard_tools = STANDARD_TOOL_SCHEMA self.battle_history = [] def _format_battle_state(self, battle: Battle) -> str: active_pkmn = battle.active_pokemon active_pkmn_info = f"Your active Pokemon: {active_pkmn.species} " \ f"(Type: {'/'.join(map(str, active_pkmn.types))}) " \ f"HP: {active_pkmn.current_hp_fraction * 100:.1f}% " \ f"Status: {active_pkmn.status.name if active_pkmn.status else 'None'} " \ f"Boosts: {active_pkmn.boosts}" opponent_pkmn = battle.opponent_active_pokemon opp_info_str = "Unknown" if opponent_pkmn: opp_info_str = f"{opponent_pkmn.species} " \ f"(Type: {'/'.join(map(str, opponent_pkmn.types))}) " \ f"HP: {opponent_pkmn.current_hp_fraction * 100:.1f}% " \ f"Status: {opponent_pkmn.status.name if opponent_pkmn.status else 'None'} " \ f"Boosts: {opponent_pkmn.boosts}" opponent_pkmn_info = f"Opponent's active Pokemon: {opp_info_str}" available_moves_info = "Available moves:\n" if battle.available_moves: available_moves_info += "\n".join( [f"- {move.id} (Type: {move.type}, BP: {move.base_power}, Acc: {move.accuracy}, PP: {move.current_pp}/{move.max_pp}, Cat: {move.category.name})" for move in battle.available_moves] ) else: available_moves_info += "- None (Must switch or Struggle)" available_switches_info = "Available switches:\n" if battle.available_switches: available_switches_info += "\n".join( [f"- {pkmn.species} (HP: {pkmn.current_hp_fraction * 100:.1f}%, Status: {pkmn.status.name if pkmn.status else 'None'})" for pkmn in battle.available_switches] ) else: available_switches_info += "- None" state_str = f"{active_pkmn_info}\n" \ f"{opponent_pkmn_info}\n\n" \ f"{available_moves_info}\n\n" \ f"{available_switches_info}\n\n" \ f"Weather: {battle.weather}\n" \ f"Terrains: {battle.fields}\n" \ f"Your Side Conditions: {battle.side_conditions}\n" \ f"Opponent Side Conditions: {battle.opponent_side_conditions}" return state_str.strip() def _find_move_by_name(self, battle: Battle, move_name: str) -> Optional[Move]: normalized_name = normalize_name(move_name) # Prioritize exact ID match for move in battle.available_moves: if move.id == normalized_name: return move # Fallback: Check display name (less reliable) for move in battle.available_moves: if move.name.lower() == move_name.lower(): print(f"Warning: Matched move by display name '{move.name}' instead of ID '{move.id}'. Input was '{move_name}'.") return move return None def _find_pokemon_by_name(self, battle: Battle, pokemon_name: str) -> Optional[Pokemon]: normalized_name = normalize_name(pokemon_name) for pkmn in battle.available_switches: # Normalize the species name for comparison if normalize_name(pkmn.species) == normalized_name: return pkmn return None async def choose_move(self, battle: Battle) -> str: battle_state_str = self._format_battle_state(battle) decision_result = await self._get_llm_decision(battle_state_str) decision = decision_result.get("decision") error_message = decision_result.get("error") action_taken = False fallback_reason = "" if decision: function_name = decision.get("name") args = decision.get("arguments", {}) if function_name == "choose_move": move_name = args.get("move_name") if move_name: chosen_move = self._find_move_by_name(battle, move_name) if chosen_move and chosen_move in battle.available_moves: action_taken = True chat_msg = f"AI Decision: Using move '{chosen_move.id}'." print(chat_msg) return self.create_order(chosen_move) else: fallback_reason = f"LLM chose unavailable/invalid move '{move_name}'." else: fallback_reason = "LLM 'choose_move' called without 'move_name'." elif function_name == "choose_switch": pokemon_name = args.get("pokemon_name") if pokemon_name: chosen_switch = self._find_pokemon_by_name(battle, pokemon_name) if chosen_switch and chosen_switch in battle.available_switches: action_taken = True chat_msg = f"AI Decision: Switching to '{chosen_switch.species}'." print(chat_msg) return self.create_order(chosen_switch) else: fallback_reason = f"LLM chose unavailable/invalid switch '{pokemon_name}'." else: fallback_reason = "LLM 'choose_switch' called without 'pokemon_name'." else: fallback_reason = f"LLM called unknown function '{function_name}'." if not action_taken: if not fallback_reason: if error_message: fallback_reason = f"API Error: {error_message}" elif decision is None: fallback_reason = "LLM did not provide a valid function call." else: fallback_reason = "Unknown error processing LLM decision." print(f"Warning: {fallback_reason} Choosing random action.") if battle.available_moves or battle.available_switches: return self.choose_random_move(battle) else: print("AI Fallback: No moves or switches available. Using Struggle/Default.") return self.choose_default_move(battle) async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]: raise NotImplementedError("Subclasses must implement _get_llm_decision") # --- Google Gemini Agent --- class GeminiAgent(LLMAgentBase): """Uses Google Gemini API for decisions.""" def __init__(self, api_key: str = None, model: str = "gemini-1.5-flash", *args, **kwargs): super().__init__(*args, **kwargs) self.model_name = model used_api_key = api_key or os.environ.get("GOOGLE_API_KEY") if not used_api_key: raise ValueError("Google API key not provided or found in GOOGLE_API_KEY env var.") # Initialize Gemini client genai.configure(api_key=used_api_key) # Configure the model with tools self.gemini_tool_config = [ { "function_declarations": list(self.standard_tools.values()) } ] # Initialize the model self.model = genai.GenerativeModel( model_name=self.model_name, tools=self.gemini_tool_config ) async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]: """Sends state to the Gemini API and gets back the function call decision.""" prompt = ( "You are a skilled Pokemon battle AI. Your goal is to win the battle. " "Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. " "Consider type matchups, HP, status conditions, field effects, entry hazards, and potential opponent actions. " "Only choose actions listed as available using their exact ID (for moves) or species name (for switches). " "Use the provided functions to indicate your choice.\n\n" f"Current Battle State:\n{battle_state}\n\n" "Choose the best action by calling the appropriate function ('choose_move' or 'choose_switch')." ) try: # Use the async API for Gemini response = await self.model.generate_content_async( prompt, generation_config={"temperature": 0.5} ) if not response.candidates: finish_reason_str = "No candidates found" try: finish_reason_str = response.prompt_feedback.block_reason.name except AttributeError: pass return {"error": f"Gemini response issue. Reason: {finish_reason_str}"} candidate = response.candidates[0] if not candidate.content or not candidate.content.parts: finish_reason_str = "Unknown" try: finish_reason_str = candidate.finish_reason.name except AttributeError: pass return {"error": f"Gemini response issue. Finish Reason: {finish_reason_str}"} for part in candidate.content.parts: if hasattr(part, 'function_call') and part.function_call: fc = part.function_call function_name = fc.name # Convert arguments to dict arguments = {} if fc.args: arguments = {k: v for k, v in fc.args.items()} if function_name in self.standard_tools: return {"decision": {"name": function_name, "arguments": arguments}} else: return {"error": f"Model called unknown function '{function_name}'. Args: {arguments}"} # If we got here, no function call was found in any part text_content = " ".join([ part.text if hasattr(part, 'text') else str(part) for part in candidate.content.parts ]) return {"error": f"Gemini did not return a function call. Response: {text_content[:100]}..."} except Exception as e: print(f"Unexpected error during Gemini processing: {e}") import traceback traceback.print_exc() return {"error": f"Unexpected error: {str(e)}"} # --- OpenAI Agent --- class OpenAIAgent(LLMAgentBase): """Uses OpenAI API for decisions.""" def __init__(self, api_key: str = None, model: str = "gpt-4o", *args, **kwargs): super().__init__(*args, **kwargs) self.model = model used_api_key = api_key or os.environ.get("OPENAI_API_KEY") if not used_api_key: raise ValueError("OpenAI API key not provided or found in OPENAI_API_KEY env var.") self.openai_client = AsyncOpenAI(api_key=used_api_key) # Convert standard schema to OpenAI's format self.openai_tools = list(self.standard_tools.values()) async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]: system_prompt = ( "You are a skilled Pokemon battle AI. Your goal is to win the battle. " "Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. " "Consider type matchups, HP, status conditions, field effects, entry hazards, and potential opponent actions. " "Only choose actions listed as available using their exact ID (for moves) or species name (for switches). " "Use the provided functions to indicate your choice." ) user_prompt = f"Current Battle State:\n{battle_state}\n\nChoose the best action by calling the appropriate function ('choose_move' or 'choose_switch')." try: response = await self.openai_client.chat.completions.create( model=self.model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ], tools=self.openai_tools, tool_choice="auto", # Let the model choose temperature=0.5, ) message = response.choices[0].message # Check for tool calls in the response if message.tool_calls: tool_call = message.tool_calls[0] # Get the first tool call function_name = tool_call.function.name try: arguments = json.loads(tool_call.function.arguments or '{}') if function_name in self.standard_tools: return {"decision": {"name": function_name, "arguments": arguments}} else: return {"error": f"Model called unknown function '{function_name}'."} except json.JSONDecodeError: return {"error": f"Error decoding function arguments: {tool_call.function.arguments}"} else: # Model decided not to call a function return {"error": f"OpenAI did not return a function call. Response: {message.content}"} except APIError as e: print(f"Error during OpenAI API call: {e}") return {"error": f"OpenAI API Error: {e.status_code} - {e.message}"} except Exception as e: print(f"Unexpected error during OpenAI API call: {e}") return {"error": f"Unexpected error: {e}"} # --- Mistral Agent --- class MistralAgent(LLMAgentBase): """Uses Mistral AI API for decisions.""" def __init__(self, api_key: str = None, model: str = "mistral-large-latest", *args, **kwargs): super().__init__(*args, **kwargs) self.model = model used_api_key = api_key or os.environ.get("MISTRAL_API_KEY") if not used_api_key: raise ValueError("Mistral API key not provided or found in MISTRAL_API_KEY env var.") self.mistral_client = Mistral(api_key=used_api_key) # Convert standard schema to Mistral's tool format self.mistral_tools = list(self.standard_tools.values()) async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]: system_prompt = ( "You are a skilled Pokemon battle AI. Your goal is to win the battle. " "Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. " "Consider type matchups, HP, status conditions, field effects, entry hazards, and potential opponent actions. " "Only choose actions listed as available using their exact ID (for moves) or species name (for switches). " "Use the provided tools to indicate your choice." ) user_prompt = f"Current Battle State:\n{battle_state}\n\nChoose the best action by calling the appropriate function ('choose_move' or 'choose_switch')." try: response = await self.mistral_client.chat.complete( model=self.model, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ], tools=self.mistral_tools, tool_choice="auto", # Let the model choose temperature=0.5, ) message = response.choices[0].message # Check for tool calls in the response if message.tool_calls: tool_call = message.tool_calls[0] # Get the first tool call function_name = tool_call.function.name try: arguments = json.loads(tool_call.function.arguments or '{}') if function_name in self.standard_tools: return {"decision": {"name": function_name, "arguments": arguments}} else: return {"error": f"Model called unknown function '{function_name}'."} except json.JSONDecodeError: return {"error": f"Error decoding function arguments: {tool_call.function.arguments}"} else: # Model decided not to call a tool return {"error": f"Mistral did not return a tool call. Response: {message.content}"} except Exception as e: print(f"Error during Mistral API call: {e}") return {"error": f"Unexpected error: {str(e)}"}