Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
# %%
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
import yfinance as yf
|
6 |
+
from datetime import datetime
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals
|
11 |
+
|
12 |
+
def calculate_sma(df, window):
|
13 |
+
return df['Close'].rolling(window=window).mean()
|
14 |
+
|
15 |
+
def calculate_ema(df, window):
|
16 |
+
return df['Close'].ewm(span=window, adjust=False).mean()
|
17 |
+
|
18 |
+
|
19 |
+
def calculate_macd(df):
|
20 |
+
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
|
21 |
+
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
|
22 |
+
macd = short_ema - long_ema
|
23 |
+
signal = macd.ewm(span=9, adjust=False).mean()
|
24 |
+
return macd, signal
|
25 |
+
|
26 |
+
|
27 |
+
def calculate_rsi(df):
|
28 |
+
delta = df['Close'].diff()
|
29 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
30 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
31 |
+
rs = gain / loss
|
32 |
+
rsi = 100 - (100 / (1 + rs))
|
33 |
+
return rsi
|
34 |
+
|
35 |
+
def calculate_bollinger_bands(df):
|
36 |
+
middle_bb = df['Close'].rolling(window=20).mean()
|
37 |
+
upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std()
|
38 |
+
lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std()
|
39 |
+
return middle_bb, upper_bb, lower_bb
|
40 |
+
|
41 |
+
def calculate_stochastic_oscillator(df):
|
42 |
+
lowest_low = df['Low'].rolling(window=14).min()
|
43 |
+
highest_high = df['High'].rolling(window=14).max()
|
44 |
+
slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100
|
45 |
+
slowd = slowk.rolling(window=3).mean()
|
46 |
+
return slowk, slowd
|
47 |
+
|
48 |
+
def calculate_atr(df, window=14):
|
49 |
+
high_low = df['High'] - df['Low']
|
50 |
+
high_close = np.abs(df['High'] - df['Close'].shift())
|
51 |
+
low_close = np.abs(df['Low'] - df['Close'].shift())
|
52 |
+
tr = high_low.combine(high_close, max).combine(low_close, max)
|
53 |
+
atr = tr.rolling(window=window).mean()
|
54 |
+
return atr
|
55 |
+
|
56 |
+
def calculate_cmf(df, window=20):
|
57 |
+
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
|
58 |
+
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
|
59 |
+
return cmf
|
60 |
+
|
61 |
+
def calculate_cci(df, window=20):
|
62 |
+
"""Calculate Commodity Channel Index (CCI)."""
|
63 |
+
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
|
64 |
+
sma = typical_price.rolling(window=window).mean()
|
65 |
+
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
|
66 |
+
cci = (typical_price - sma) / (0.015 * mean_deviation)
|
67 |
+
return cci
|
68 |
+
|
69 |
+
def calculate_atr_signal(df, atr_column='ATR', close_column='Close', atr_window=20, ma_window=50, volatility_days=3, atr_threshold=1.2):
|
70 |
+
|
71 |
+
# Calculate the 20-day ATR rolling mean and high volatility threshold
|
72 |
+
df['ATR_20'] = df[atr_column].rolling(window=atr_window).mean()
|
73 |
+
df['High_Volatility'] = np.where(df[atr_column] > atr_threshold * df['ATR_20'], 1, 0)
|
74 |
+
|
75 |
+
# Calculate the 50-day moving average of the close prices for trend direction
|
76 |
+
df['MA_50'] = df[close_column].rolling(window=ma_window).mean()
|
77 |
+
|
78 |
+
# Generate the ATR signal based on high volatility and trend direction
|
79 |
+
df['ATR_Signal'] = np.where(
|
80 |
+
(df['High_Volatility'].rolling(window=volatility_days).sum() >= volatility_days) & (df[close_column] > df['MA_50']),
|
81 |
+
1, # Buy Signal
|
82 |
+
np.where(
|
83 |
+
(df['High_Volatility'].rolling(window=volatility_days).sum() >= volatility_days) & (df[close_column] < df['MA_50']),
|
84 |
+
-1, # Sell Signal
|
85 |
+
0 # No Signal
|
86 |
+
)
|
87 |
+
)
|
88 |
+
|
89 |
+
# Return only the ATR_Signal column as output
|
90 |
+
return df['ATR_Signal']
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def generate_trading_signals(df):
|
95 |
+
# Calculate various indicators
|
96 |
+
df['SMA_30'] = calculate_sma(df, 30)
|
97 |
+
df['SMA_100'] = calculate_sma(df, 100)
|
98 |
+
df['EMA_12'] = calculate_ema(df, 12)
|
99 |
+
df['EMA_26'] = calculate_ema(df, 26)
|
100 |
+
df['RSI'] = calculate_rsi(df)
|
101 |
+
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
|
102 |
+
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
|
103 |
+
df['ATR'] = calculate_atr(df)
|
104 |
+
df['CMF'] = calculate_cmf(df)
|
105 |
+
df['CCI'] = calculate_cci(df)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
# Generate trading signals
|
110 |
+
df['SMA_Signal'] = np.where(df['SMA_30'] > df['SMA_100'], 1, 0)
|
111 |
+
|
112 |
+
macd, signal = calculate_macd(df)
|
113 |
+
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
|
114 |
+
(macd < signal) & (macd.shift(1) >= signal.shift(1))],[1, -1], default=0)
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
df['RSI_Signal'] = np.where(df['RSI'] < 20, 1, 0)
|
119 |
+
df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal'])
|
120 |
+
|
121 |
+
df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'], 0, 0)
|
122 |
+
df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal'])
|
123 |
+
|
124 |
+
df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 15), 1, 0)
|
125 |
+
df['Stochastic_Signal'] = np.where((df['SlowK'] > 90) & (df['SlowD'] > 85), -1, df['Stochastic_Signal'])
|
126 |
+
|
127 |
+
df['ATR_Signal'] = calculate_atr_signal(df)
|
128 |
+
|
129 |
+
df['CMF_Signal'] = np.where(df['CMF'] > 0.3, -1, np.where(df['CMF'] < -0.3, 1, 0))
|
130 |
+
|
131 |
+
|
132 |
+
df['CCI_Signal'] = np.where(df['CCI'] < -180, 1, 0)
|
133 |
+
df['CCI_Signal'] = np.where(df['CCI'] > 150, -1, df['CCI_Signal'])
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
# Combined signal for stronger buy/sell points
|
138 |
+
df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal',
|
139 |
+
'Stochastic_Signal', 'CMF_Signal',
|
140 |
+
'CCI_Signal']].sum(axis=1)
|
141 |
+
|
142 |
+
return df
|
143 |
+
|
144 |
+
|
145 |
+
# %%
|
146 |
+
def plot_combined_signals(df, ticker):
|
147 |
+
# Create a figure
|
148 |
+
fig = go.Figure()
|
149 |
+
|
150 |
+
# Add closing price trace
|
151 |
+
fig.add_trace(go.Scatter(
|
152 |
+
x=df.index, y=df['Close'],
|
153 |
+
mode='lines',
|
154 |
+
name='Closing Price',
|
155 |
+
line=dict(color='lightcoral', width=2)
|
156 |
+
))
|
157 |
+
|
158 |
+
# Add buy signals
|
159 |
+
buy_signals = df[df['Combined_Signal'] >= 3]
|
160 |
+
fig.add_trace(go.Scatter(
|
161 |
+
x=buy_signals.index, y=buy_signals['Close'],
|
162 |
+
mode='markers',
|
163 |
+
marker=dict(symbol='triangle-up', size=10, color='lightgreen'),
|
164 |
+
name='Buy Signal'
|
165 |
+
))
|
166 |
+
|
167 |
+
# Add sell signals
|
168 |
+
sell_signals = df[df['Combined_Signal'] <= -3]
|
169 |
+
fig.add_trace(go.Scatter(
|
170 |
+
x=sell_signals.index, y=sell_signals['Close'],
|
171 |
+
mode='markers',
|
172 |
+
marker=dict(symbol='triangle-down', size=10, color='lightsalmon'),
|
173 |
+
name='Sell Signal'
|
174 |
+
))
|
175 |
+
|
176 |
+
# Combined signal trace
|
177 |
+
fig.add_trace(go.Scatter(
|
178 |
+
x=df.index, y=df['Combined_Signal'],
|
179 |
+
mode='lines',
|
180 |
+
name='Combined Signal',
|
181 |
+
line=dict(color='deepskyblue', width=2),
|
182 |
+
yaxis='y2'
|
183 |
+
))
|
184 |
+
|
185 |
+
# Update layout
|
186 |
+
fig.update_layout(
|
187 |
+
title=f'{ticker}: Stock Price and Combined Trading Signal (Last 60 Days)',
|
188 |
+
xaxis=dict(title='Date'),
|
189 |
+
yaxis=dict(title='Price', side='left'),
|
190 |
+
yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False),
|
191 |
+
plot_bgcolor='black',
|
192 |
+
paper_bgcolor='black',
|
193 |
+
font=dict(color='white')
|
194 |
+
)
|
195 |
+
|
196 |
+
return fig
|
197 |
+
|
198 |
+
# %%
|
199 |
+
def stock_analysis(ticker, start_date, end_date):
|
200 |
+
# Download stock data from Yahoo Finance
|
201 |
+
df = yf.download(ticker, start=start_date, end=end_date)
|
202 |
+
|
203 |
+
# Generate signals
|
204 |
+
generate_trading_signals(df)
|
205 |
+
|
206 |
+
# Last 60 days
|
207 |
+
df_last_60 = df.tail(60)
|
208 |
+
|
209 |
+
# Plot signals
|
210 |
+
fig_signals = plot_combined_signals(df_last_60, ticker)
|
211 |
+
|
212 |
+
return fig_signals
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# %%
|
218 |
+
def plot_individual_signals(df, ticker):
|
219 |
+
# Create a figure
|
220 |
+
fig = go.Figure()
|
221 |
+
fig.add_trace(go.Scatter(
|
222 |
+
x=df.index, y=df['Close'],
|
223 |
+
mode='lines',
|
224 |
+
name='Closing Price',
|
225 |
+
line=dict(color='lightcoral', width=2)
|
226 |
+
))
|
227 |
+
|
228 |
+
# Add buy/sell signals for each indicator
|
229 |
+
signal_names = ['RSI_Signal', 'BB_Signal',
|
230 |
+
'Stochastic_Signal', 'CMF_Signal',
|
231 |
+
'CCI_Signal']
|
232 |
+
|
233 |
+
for signal in signal_names:
|
234 |
+
buy_signals = df[df[signal] == 1]
|
235 |
+
sell_signals = df[df[signal] == -1]
|
236 |
+
|
237 |
+
fig.add_trace(go.Scatter(
|
238 |
+
x=buy_signals.index, y=buy_signals['Close'],
|
239 |
+
mode='markers',
|
240 |
+
marker=dict(symbol='triangle-up', size=10, color='lightgreen'),
|
241 |
+
name=f'{signal} Buy Signal'
|
242 |
+
))
|
243 |
+
|
244 |
+
fig.add_trace(go.Scatter(
|
245 |
+
x=sell_signals.index, y=sell_signals['Close'],
|
246 |
+
mode='markers',
|
247 |
+
marker=dict(symbol='triangle-down', size=10, color='lightsalmon'),
|
248 |
+
name=f'{signal} Sell Signal'
|
249 |
+
))
|
250 |
+
|
251 |
+
fig.update_layout(
|
252 |
+
title=f'{ticker}: Individual Trading Signals',
|
253 |
+
xaxis=dict(title='Date'),
|
254 |
+
yaxis=dict(title='Price', side='left'),
|
255 |
+
plot_bgcolor='black',
|
256 |
+
paper_bgcolor='black',
|
257 |
+
font=dict(color='white')
|
258 |
+
)
|
259 |
+
|
260 |
+
return fig
|
261 |
+
|
262 |
+
|
263 |
+
def display_signals(df):
|
264 |
+
# Create a signals DataFrame
|
265 |
+
signals_df = df[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal',
|
266 |
+
'BB_Signal', 'Stochastic_Signal', 'ATR_Signal',
|
267 |
+
'CMF_Signal', 'CCI_Signal']].copy()
|
268 |
+
|
269 |
+
# The Date is the index, so we don't need to add it as a column
|
270 |
+
signals_df.index.name = 'Date' # Name the index for better readability
|
271 |
+
|
272 |
+
# Replace signal values with 'Buy', 'Sell', or 'Hold'
|
273 |
+
for column in signals_df.columns:
|
274 |
+
signals_df[column] = signals_df[column].replace(
|
275 |
+
{1: 'Buy', -1: 'Sell', 0: 'Hold'}
|
276 |
+
)
|
277 |
+
|
278 |
+
return signals_df
|
279 |
+
|
280 |
+
def stock_analysis(ticker, start_date, end_date):
|
281 |
+
# Download stock data from Yahoo Finance
|
282 |
+
df = yf.download(ticker, start=start_date, end=end_date)
|
283 |
+
|
284 |
+
# Generate signals
|
285 |
+
df = generate_trading_signals(df)
|
286 |
+
|
287 |
+
# Last 60 days for plotting
|
288 |
+
df_last_60 = df.tail(60)
|
289 |
+
|
290 |
+
# Plot combined signals
|
291 |
+
fig_signals = plot_combined_signals(df_last_60, ticker)
|
292 |
+
|
293 |
+
# Plot individual signals
|
294 |
+
fig_individual_signals = plot_individual_signals(df_last_60, ticker)
|
295 |
+
|
296 |
+
# Display signals DataFrame
|
297 |
+
signals_df = df_last_60[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal',
|
298 |
+
'Stochastic_Signal', 'ATR_Signal', 'CMF_Signal',
|
299 |
+
'CCI_Signal']]
|
300 |
+
|
301 |
+
return fig_signals, fig_individual_signals
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
# %%
|
306 |
+
# Define Gradio interface
|
307 |
+
with gr.Blocks() as demo:
|
308 |
+
gr.Markdown("## Stock Market Analysis App")
|
309 |
+
|
310 |
+
ticker_input = gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, NVDA)", value="NVDA")
|
311 |
+
start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2022-01-01")
|
312 |
+
end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2025-01-01")
|
313 |
+
|
314 |
+
# Create a submit button that runs the stock analysis function
|
315 |
+
button = gr.Button("Analyze Stock")
|
316 |
+
|
317 |
+
# Outputs: Display results, charts
|
318 |
+
combined_signals_output = gr.Plot(label="Combined Trading Signals")
|
319 |
+
individual_signals_output = gr.Plot(label="Individual Trading Signals")
|
320 |
+
#signals_df_output = gr.Dataframe(label="Buy/Sell Signals")
|
321 |
+
|
322 |
+
# Link button to function
|
323 |
+
button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input],
|
324 |
+
outputs=[combined_signals_output, individual_signals_output])
|
325 |
+
|
326 |
+
# Launch the interface
|
327 |
+
demo.launch()
|
328 |
+
|
329 |
+
|
330 |
+
|