Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from plotly.subplots import make_subplots
|
10 |
+
import yfinance as yf
|
11 |
+
|
12 |
+
# Configuration
|
13 |
+
class Config:
|
14 |
+
FINNHUB_API_KEY = "cuj17q1r01qm7p9n307gcuj17q1r01qm7p9n3080"
|
15 |
+
DEFAULT_DAYS = 30 # Reduced from 365 to make it faster
|
16 |
+
DATA_DIR = "data"
|
17 |
+
|
18 |
+
@classmethod
|
19 |
+
def initialize(cls):
|
20 |
+
os.makedirs(cls.DATA_DIR, exist_ok=True)
|
21 |
+
|
22 |
+
Config.initialize()
|
23 |
+
|
24 |
+
# Simple sentiment analyzer
|
25 |
+
class SentimentAnalyzer:
|
26 |
+
def __init__(self):
|
27 |
+
self.analyzer = SentimentIntensityAnalyzer()
|
28 |
+
|
29 |
+
def analyze(self, text):
|
30 |
+
if not isinstance(text, str) or not text.strip():
|
31 |
+
return 0
|
32 |
+
return self.analyzer.polarity_scores(text)['compound']
|
33 |
+
|
34 |
+
# News fetcher and sentiment analyzer
|
35 |
+
class StockNewsAnalyzer:
|
36 |
+
def __init__(self, symbol):
|
37 |
+
self.symbol = symbol
|
38 |
+
self.sentiment_analyzer = SentimentAnalyzer()
|
39 |
+
|
40 |
+
def get_file_path(self, file_type):
|
41 |
+
return os.path.join(Config.DATA_DIR, f"{self.symbol}_{file_type}.csv")
|
42 |
+
|
43 |
+
def get_news(self, days=Config.DEFAULT_DAYS, force_refresh=False):
|
44 |
+
"""Fetch news articles from Finnhub API"""
|
45 |
+
file_path = self.get_file_path("news")
|
46 |
+
|
47 |
+
# Return cached data if it exists and no refresh is forced
|
48 |
+
if os.path.exists(file_path) and not force_refresh:
|
49 |
+
try:
|
50 |
+
return pd.read_csv(file_path, parse_dates=['datetime'])
|
51 |
+
except Exception:
|
52 |
+
# If the file is corrupted, fetch fresh data
|
53 |
+
pass
|
54 |
+
|
55 |
+
# Calculate date range
|
56 |
+
end_date = datetime.now()
|
57 |
+
start_date = end_date - timedelta(days=days)
|
58 |
+
|
59 |
+
# Fetch from API
|
60 |
+
url = "https://finnhub.io/api/v1/company-news"
|
61 |
+
params = {
|
62 |
+
"symbol": self.symbol,
|
63 |
+
"from": start_date.strftime('%Y-%m-%d'),
|
64 |
+
"to": end_date.strftime('%Y-%m-%d'),
|
65 |
+
"token": Config.FINNHUB_API_KEY,
|
66 |
+
}
|
67 |
+
|
68 |
+
try:
|
69 |
+
response = requests.get(url, params=params, timeout=10)
|
70 |
+
data = response.json()
|
71 |
+
|
72 |
+
if not data or not isinstance(data, list):
|
73 |
+
return pd.DataFrame()
|
74 |
+
|
75 |
+
# Create DataFrame
|
76 |
+
df = pd.DataFrame(data)
|
77 |
+
if 'datetime' in df.columns:
|
78 |
+
df['datetime'] = pd.to_datetime(df['datetime'], unit='s')
|
79 |
+
# Save to CSV
|
80 |
+
df.to_csv(file_path, index=False)
|
81 |
+
return df
|
82 |
+
return pd.DataFrame()
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error fetching news: {e}")
|
85 |
+
return pd.DataFrame()
|
86 |
+
|
87 |
+
def analyze_news_sentiment(self, days=Config.DEFAULT_DAYS, force_refresh=False):
|
88 |
+
"""Analyze sentiment from news articles"""
|
89 |
+
news_df = self.get_news(days, force_refresh)
|
90 |
+
|
91 |
+
if news_df.empty:
|
92 |
+
return None, None, None
|
93 |
+
|
94 |
+
# Add sentiment scores to headlines
|
95 |
+
if 'headline' in news_df.columns:
|
96 |
+
news_df['sentiment_score'] = news_df['headline'].apply(self.sentiment_analyzer.analyze)
|
97 |
+
|
98 |
+
# Add date column for daily aggregation
|
99 |
+
news_df['date'] = news_df['datetime'].dt.date
|
100 |
+
news_df['date'] = pd.to_datetime(news_df['date'])
|
101 |
+
|
102 |
+
# Get stock price for the same period
|
103 |
+
try:
|
104 |
+
start_date = news_df['date'].min() - timedelta(days=5) # Get a few days before for context
|
105 |
+
end_date = news_df['date'].max() + timedelta(days=1)
|
106 |
+
stock_data = yf.download(self.symbol, start=start_date, end=end_date, progress=False)
|
107 |
+
if not stock_data.empty and 'Close' in stock_data.columns:
|
108 |
+
stock_data = stock_data[['Close']]
|
109 |
+
stock_data.columns = ['close']
|
110 |
+
stock_data = stock_data.reset_index()
|
111 |
+
stock_data.rename(columns={'Date': 'date'}, inplace=True)
|
112 |
+
stock_data['date'] = pd.to_datetime(stock_data['date'].dt.date)
|
113 |
+
stock_data.set_index('date', inplace=True)
|
114 |
+
else:
|
115 |
+
stock_data = pd.DataFrame()
|
116 |
+
except Exception:
|
117 |
+
stock_data = pd.DataFrame()
|
118 |
+
|
119 |
+
# Group by date for daily sentiment
|
120 |
+
daily_sentiment = news_df.groupby('date').agg(
|
121 |
+
avg_sentiment=('sentiment_score', 'mean'),
|
122 |
+
article_count=('sentiment_score', 'count'),
|
123 |
+
positive_count=('sentiment_score', lambda x: sum(x > 0.05)),
|
124 |
+
negative_count=('sentiment_score', lambda x: sum(x < -0.05)),
|
125 |
+
neutral_count=('sentiment_score', lambda x: sum((x >= -0.05) & (x <= 0.05)))
|
126 |
+
).reset_index()
|
127 |
+
|
128 |
+
# Sort news articles by sentiment (most positive and most negative)
|
129 |
+
news_df = news_df.sort_values('sentiment_score', ascending=False)
|
130 |
+
|
131 |
+
# Get top 5 positive and negative headlines
|
132 |
+
top_positive = news_df[news_df['sentiment_score'] > 0].head(5)
|
133 |
+
top_negative = news_df[news_df['sentiment_score'] < 0].tail(5)
|
134 |
+
|
135 |
+
# Return sentiment data and headlines
|
136 |
+
return daily_sentiment, stock_data, pd.concat([top_positive, top_negative])
|
137 |
+
|
138 |
+
return None, None, None
|
139 |
+
|
140 |
+
# Visualization Functions
|
141 |
+
def create_sentiment_overview(daily_sentiment, stock_data, top_headlines, symbol):
|
142 |
+
"""Create a sentiment overview visualization"""
|
143 |
+
if daily_sentiment is None or daily_sentiment.empty:
|
144 |
+
return None
|
145 |
+
|
146 |
+
# Create figure with secondary y-axis
|
147 |
+
fig = make_subplots(rows=2, cols=1, specs=[[{"secondary_y": True}], [{}]],
|
148 |
+
row_heights=[0.7, 0.3], vertical_spacing=0.1)
|
149 |
+
|
150 |
+
# Add stock price if available
|
151 |
+
if not stock_data.empty:
|
152 |
+
fig.add_trace(
|
153 |
+
go.Scatter(
|
154 |
+
x=stock_data.index,
|
155 |
+
y=stock_data['close'],
|
156 |
+
name='Stock Price',
|
157 |
+
line=dict(color='#1f77b4', width=2)
|
158 |
+
),
|
159 |
+
row=1, col=1, secondary_y=False
|
160 |
+
)
|
161 |
+
|
162 |
+
# Add daily sentiment score
|
163 |
+
fig.add_trace(
|
164 |
+
go.Scatter(
|
165 |
+
x=daily_sentiment['date'],
|
166 |
+
y=daily_sentiment['avg_sentiment'],
|
167 |
+
name='Sentiment Score',
|
168 |
+
line=dict(color='#ff7f0e', width=2)
|
169 |
+
),
|
170 |
+
row=1, col=1, secondary_y=True
|
171 |
+
)
|
172 |
+
|
173 |
+
# Add article count as a bar
|
174 |
+
fig.add_trace(
|
175 |
+
go.Bar(
|
176 |
+
x=daily_sentiment['date'],
|
177 |
+
y=daily_sentiment['article_count'],
|
178 |
+
name='Article Count',
|
179 |
+
marker_color='rgba(135, 206, 235, 0.5)',
|
180 |
+
opacity=0.7
|
181 |
+
),
|
182 |
+
row=2, col=1
|
183 |
+
)
|
184 |
+
|
185 |
+
# Add sentiment breakdown bars (positive, negative, neutral)
|
186 |
+
fig.add_trace(
|
187 |
+
go.Bar(
|
188 |
+
x=daily_sentiment['date'],
|
189 |
+
y=daily_sentiment['positive_count'],
|
190 |
+
name='Positive',
|
191 |
+
marker_color='rgba(0, 128, 0, 0.7)'
|
192 |
+
),
|
193 |
+
row=2, col=1
|
194 |
+
)
|
195 |
+
|
196 |
+
fig.add_trace(
|
197 |
+
go.Bar(
|
198 |
+
x=daily_sentiment['date'],
|
199 |
+
y=daily_sentiment['negative_count'],
|
200 |
+
name='Negative',
|
201 |
+
marker_color='rgba(255, 0, 0, 0.7)'
|
202 |
+
),
|
203 |
+
row=2, col=1
|
204 |
+
)
|
205 |
+
|
206 |
+
fig.add_trace(
|
207 |
+
go.Bar(
|
208 |
+
x=daily_sentiment['date'],
|
209 |
+
y=daily_sentiment['neutral_count'],
|
210 |
+
name='Neutral',
|
211 |
+
marker_color='rgba(128, 128, 128, 0.7)'
|
212 |
+
),
|
213 |
+
row=2, col=1
|
214 |
+
)
|
215 |
+
|
216 |
+
# Update layout
|
217 |
+
fig.update_layout(
|
218 |
+
title=f"{symbol} News Sentiment Analysis",
|
219 |
+
template='plotly_white',
|
220 |
+
hovermode='x unified',
|
221 |
+
barmode='stack',
|
222 |
+
legend=dict(orientation='h', yanchor='bottom', y=1.02, xanchor='right', x=1),
|
223 |
+
height=700,
|
224 |
+
margin=dict(l=20, r=20, t=80, b=20)
|
225 |
+
)
|
226 |
+
|
227 |
+
# Update y-axis titles
|
228 |
+
fig.update_yaxes(title_text="Stock Price", row=1, col=1, secondary_y=False)
|
229 |
+
fig.update_yaxes(title_text="Sentiment Score", row=1, col=1, secondary_y=True)
|
230 |
+
fig.update_yaxes(title_text="Article Count", row=2, col=1)
|
231 |
+
|
232 |
+
return fig
|
233 |
+
|
234 |
+
def format_headlines(headlines_df):
|
235 |
+
"""Format headlines with sentiment scores for display"""
|
236 |
+
if headlines_df is None or headlines_df.empty:
|
237 |
+
return "No headlines available."
|
238 |
+
|
239 |
+
# Sort by sentiment score (most positive first)
|
240 |
+
headlines_df = headlines_df.sort_values('sentiment_score', ascending=False)
|
241 |
+
|
242 |
+
result = "## Top Positive Headlines\n\n"
|
243 |
+
for _, row in headlines_df[headlines_df['sentiment_score'] > 0].head(5).iterrows():
|
244 |
+
date = row['datetime'].strftime('%Y-%m-%d')
|
245 |
+
sentiment = row['sentiment_score']
|
246 |
+
color = "green"
|
247 |
+
result += f"- **{date}** | [{row['headline']}]({row['url']}) | <span style='color:{color};'>*{sentiment:.2f}*</span>\n\n"
|
248 |
+
|
249 |
+
result += "## Top Negative Headlines\n\n"
|
250 |
+
for _, row in headlines_df[headlines_df['sentiment_score'] < 0].sort_values('sentiment_score').head(5).iterrows():
|
251 |
+
date = row['datetime'].strftime('%Y-%m-%d')
|
252 |
+
sentiment = row['sentiment_score']
|
253 |
+
color = "red"
|
254 |
+
result += f"- **{date}** | [{row['headline']}]({row['url']}) | <span style='color:{color};'>*{sentiment:.2f}*</span>\n\n"
|
255 |
+
|
256 |
+
return result
|
257 |
+
|
258 |
+
def create_summary(daily_sentiment, symbol):
|
259 |
+
"""Create a text summary of sentiment analysis"""
|
260 |
+
if daily_sentiment is None or daily_sentiment.empty:
|
261 |
+
return f"No sentiment data available for {symbol}."
|
262 |
+
|
263 |
+
# Calculate overall sentiment statistics
|
264 |
+
avg_sentiment = daily_sentiment['avg_sentiment'].mean()
|
265 |
+
total_articles = daily_sentiment['article_count'].sum()
|
266 |
+
total_positive = daily_sentiment['positive_count'].sum()
|
267 |
+
total_negative = daily_sentiment['negative_count'].sum()
|
268 |
+
total_neutral = daily_sentiment['neutral_count'].sum()
|
269 |
+
|
270 |
+
# Determine sentiment trend
|
271 |
+
sentiment_trend = "neutral"
|
272 |
+
if avg_sentiment > 0.05:
|
273 |
+
sentiment_trend = "positive"
|
274 |
+
elif avg_sentiment < -0.05:
|
275 |
+
sentiment_trend = "negative"
|
276 |
+
|
277 |
+
# Create summary
|
278 |
+
summary = f"""
|
279 |
+
## {symbol} Sentiment Summary
|
280 |
+
|
281 |
+
### Overview
|
282 |
+
- **Overall Sentiment**: {sentiment_trend.title()} (Score: {avg_sentiment:.2f})
|
283 |
+
- **Total Articles**: {total_articles}
|
284 |
+
- **Date Range**: {daily_sentiment['date'].min().strftime('%Y-%m-%d')} to {daily_sentiment['date'].max().strftime('%Y-%m-%d')}
|
285 |
+
|
286 |
+
### Sentiment Breakdown
|
287 |
+
- **Positive Articles**: {total_positive} ({total_positive/total_articles*100:.1f}%)
|
288 |
+
- **Negative Articles**: {total_negative} ({total_negative/total_articles*100:.1f}%)
|
289 |
+
- **Neutral Articles**: {total_neutral} ({total_neutral/total_articles*100:.1f}%)
|
290 |
+
"""
|
291 |
+
|
292 |
+
return summary
|
293 |
+
|
294 |
+
# Gradio Interface
|
295 |
+
def analyze_stock_sentiment(symbol, days, refresh_data):
|
296 |
+
"""Main function for Gradio interface"""
|
297 |
+
if not symbol:
|
298 |
+
return "Please enter a valid stock symbol.", None, "No headlines available."
|
299 |
+
|
300 |
+
# Make sure symbol is uppercase
|
301 |
+
symbol = symbol.upper().strip()
|
302 |
+
|
303 |
+
# Create analyzer
|
304 |
+
analyzer = StockNewsAnalyzer(symbol)
|
305 |
+
|
306 |
+
# Get sentiment data
|
307 |
+
daily_sentiment, stock_data, top_headlines = analyzer.analyze_news_sentiment(days, refresh_data)
|
308 |
+
|
309 |
+
if daily_sentiment is None or daily_sentiment.empty:
|
310 |
+
return f"No news data available for {symbol}. Try another symbol or increase the time range.", None, "No headlines available."
|
311 |
+
|
312 |
+
# Create visualization
|
313 |
+
sentiment_plot = create_sentiment_overview(daily_sentiment, stock_data, top_headlines, symbol)
|
314 |
+
|
315 |
+
# Generate summary
|
316 |
+
summary = create_summary(daily_sentiment, symbol)
|
317 |
+
|
318 |
+
# Format headlines
|
319 |
+
headlines = format_headlines(top_headlines)
|
320 |
+
|
321 |
+
return summary, sentiment_plot, headlines
|
322 |
+
|
323 |
+
# Build Gradio interface
|
324 |
+
def build_interface():
|
325 |
+
"""Create the Gradio interface"""
|
326 |
+
with gr.Blocks(title="Stock Sentiment Analysis", theme=gr.themes.Soft()) as app:
|
327 |
+
gr.Markdown("# Stock News Sentiment Analysis")
|
328 |
+
gr.Markdown("Analyze the sentiment of news articles for any stock symbol")
|
329 |
+
|
330 |
+
with gr.Row():
|
331 |
+
with gr.Column(scale=1):
|
332 |
+
# Inputs
|
333 |
+
symbol_input = gr.Textbox(label="Stock Symbol", value="BABA", placeholder="e.g., AAPL, MSFT, GOOGL")
|
334 |
+
days_input = gr.Slider(label="Days of History", minimum=7, maximum=90, value=90, step=1)
|
335 |
+
refresh_data = gr.Checkbox(label="Refresh Data", value=False)
|
336 |
+
analyze_button = gr.Button("Analyze Sentiment", variant="primary")
|
337 |
+
|
338 |
+
# Outputs
|
339 |
+
summary_text = gr.Markdown()
|
340 |
+
sentiment_plot = gr.Plot()
|
341 |
+
headlines_text = gr.Markdown()
|
342 |
+
|
343 |
+
# Set up event handlers
|
344 |
+
analyze_button.click(
|
345 |
+
fn=analyze_stock_sentiment,
|
346 |
+
inputs=[symbol_input, days_input, refresh_data],
|
347 |
+
outputs=[summary_text, sentiment_plot, headlines_text]
|
348 |
+
)
|
349 |
+
|
350 |
+
|
351 |
+
return app
|
352 |
+
|
353 |
+
# Main function
|
354 |
+
def main():
|
355 |
+
app = build_interface()
|
356 |
+
app.launch()
|
357 |
+
|
358 |
+
if __name__ == "__main__":
|
359 |
+
main()
|