Delete One-2-3-45-master 2
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- One-2-3-45-master 2/.DS_Store +0 -0
- One-2-3-45-master 2/.gitattributes +0 -35
- One-2-3-45-master 2/.gitignore +0 -11
- One-2-3-45-master 2/LICENSE +0 -201
- One-2-3-45-master 2/README.md +0 -221
- One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml +0 -117
- One-2-3-45-master 2/download_ckpt.py +0 -30
- One-2-3-45-master 2/elevation_estimate/.gitignore +0 -3
- One-2-3-45-master 2/elevation_estimate/__init__.py +0 -0
- One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py +0 -10
- One-2-3-45-master 2/elevation_estimate/loftr/__init__.py +0 -2
- One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py +0 -11
- One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py +0 -199
- One-2-3-45-master 2/elevation_estimate/loftr/loftr.py +0 -81
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py +0 -2
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py +0 -59
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py +0 -81
- One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py +0 -101
- One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py +0 -261
- One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py +0 -50
- One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py +0 -74
- One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py +0 -54
- One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py +0 -42
- One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py +0 -151
- One-2-3-45-master 2/elevation_estimate/pyproject.toml +0 -7
- One-2-3-45-master 2/elevation_estimate/utils/__init__.py +0 -0
- One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py +0 -205
- One-2-3-45-master 2/elevation_estimate/utils/plotting.py +0 -154
- One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py +0 -318
- One-2-3-45-master 2/elevation_estimate/utils/utils3d.py +0 -62
- One-2-3-45-master 2/elevation_estimate/utils/weights/.gitkeep +0 -0
- One-2-3-45-master 2/example.ipynb +0 -0
- One-2-3-45-master 2/ldm/data/__init__.py +0 -0
- One-2-3-45-master 2/ldm/data/base.py +0 -40
- One-2-3-45-master 2/ldm/data/coco.py +0 -253
- One-2-3-45-master 2/ldm/data/dummy.py +0 -34
- One-2-3-45-master 2/ldm/data/imagenet.py +0 -394
- One-2-3-45-master 2/ldm/data/inpainting/__init__.py +0 -0
- One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py +0 -166
- One-2-3-45-master 2/ldm/data/laion.py +0 -537
- One-2-3-45-master 2/ldm/data/lsun.py +0 -92
- One-2-3-45-master 2/ldm/data/nerf_like.py +0 -165
- One-2-3-45-master 2/ldm/data/simple.py +0 -526
- One-2-3-45-master 2/ldm/extras.py +0 -77
- One-2-3-45-master 2/ldm/guidance.py +0 -96
- One-2-3-45-master 2/ldm/lr_scheduler.py +0 -98
- One-2-3-45-master 2/ldm/models/autoencoder.py +0 -443
- One-2-3-45-master 2/ldm/models/diffusion/__init__.py +0 -0
- One-2-3-45-master 2/ldm/models/diffusion/classifier.py +0 -267
- One-2-3-45-master 2/ldm/models/diffusion/ddim.py +0 -326
One-2-3-45-master 2/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
One-2-3-45-master 2/.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/.gitignore
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
__pycache__/
|
2 |
-
exp/
|
3 |
-
src/
|
4 |
-
*.DS_Store
|
5 |
-
*.ipynb
|
6 |
-
*.egg-info/
|
7 |
-
*.ckpt
|
8 |
-
*.pth
|
9 |
-
|
10 |
-
!example.ipynb
|
11 |
-
!reconstruction/exp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/LICENSE
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright [yyyy] [name of copyright owner]
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/README.md
DELETED
@@ -1,221 +0,0 @@
|
|
1 |
-
<p align="center" width="100%">
|
2 |
-
<img src="https://github.com/Dustinpro/Dustinpro/assets/23076389/0fbdb69a-0fb4-4b42-b9da-e0b28532bdfd" width="80%" height="80%">
|
3 |
-
</p>
|
4 |
-
|
5 |
-
|
6 |
-
<p align="center">
|
7 |
-
[<a href="https://arxiv.org/pdf/2306.16928.pdf"><strong>Paper</strong></a>]
|
8 |
-
[<a href="http://one-2-3-45.com"><strong>Project</strong></a>]
|
9 |
-
[<a href="https://huggingface.co/spaces/One-2-3-45/One-2-3-45"><strong>Demo</strong></a>]
|
10 |
-
[<a href="#citation"><strong>BibTeX</strong></a>]
|
11 |
-
</p>
|
12 |
-
|
13 |
-
<p align="center">
|
14 |
-
<a href="https://huggingface.co/spaces/One-2-3-45/One-2-3-45">
|
15 |
-
<img alt="Hugging Face Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space_of_the_Week_%F0%9F%94%A5-blue">
|
16 |
-
</a>
|
17 |
-
</p>
|
18 |
-
|
19 |
-
One-2-3-45 rethinks how to leverage 2D diffusion models for 3D AIGC and introduces a novel forward-only paradigm that avoids the time-consuming optimization.
|
20 |
-
|
21 |
-
https://github.com/One-2-3-45/One-2-3-45/assets/16759292/a81d6e32-8d29-43a5-b044-b5112b9f9664
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
https://github.com/One-2-3-45/One-2-3-45/assets/16759292/5ecd45ef-8fd3-4643-af4c-fac3050a0428
|
26 |
-
|
27 |
-
|
28 |
-
## News
|
29 |
-
**[09/21/2023]**
|
30 |
-
One-2-3-45 is accepted by NeurIPS 2023. See you in New Orleans!
|
31 |
-
|
32 |
-
**[09/11/2023]**
|
33 |
-
Training code released.
|
34 |
-
|
35 |
-
**[08/18/2023]**
|
36 |
-
Inference code released.
|
37 |
-
|
38 |
-
**[07/24/2023]**
|
39 |
-
Our demo reached the HuggingFace top 4 trending and was featured in 🤗 Spaces of the Week 🔥! Special thanks to HuggingFace 🤗 for sponsoring this demo!!
|
40 |
-
|
41 |
-
**[07/11/2023]**
|
42 |
-
[Online interactive demo](https://huggingface.co/spaces/One-2-3-45/One-2-3-45) released! Explore it and create your own 3D models in just 45 seconds!
|
43 |
-
|
44 |
-
**[06/29/2023]**
|
45 |
-
Check out our [paper](https://arxiv.org/pdf/2306.16928.pdf). [[X](https://twitter.com/_akhaliq/status/1674617785119305728)]
|
46 |
-
|
47 |
-
## Installation
|
48 |
-
Hardware requirement: an NVIDIA GPU with memory >=18GB (_e.g._, RTX 3090 or A10). Tested on Ubuntu.
|
49 |
-
|
50 |
-
We offer two ways to setup the environment:
|
51 |
-
|
52 |
-
### Traditional Installation
|
53 |
-
<details>
|
54 |
-
<summary>Step 1: Install Debian packages. </summary>
|
55 |
-
|
56 |
-
```bash
|
57 |
-
sudo apt update && sudo apt install git-lfs libsparsehash-dev build-essential
|
58 |
-
```
|
59 |
-
</details>
|
60 |
-
|
61 |
-
<details>
|
62 |
-
<summary>Step 2: Create and activate a conda environment. </summary>
|
63 |
-
|
64 |
-
```bash
|
65 |
-
conda create -n One2345 python=3.10
|
66 |
-
conda activate One2345
|
67 |
-
```
|
68 |
-
</details>
|
69 |
-
|
70 |
-
<details>
|
71 |
-
<summary>Step 3: Clone the repository to the local machine. </summary>
|
72 |
-
|
73 |
-
```bash
|
74 |
-
# Make sure you have git-lfs installed.
|
75 |
-
git lfs install
|
76 |
-
git clone https://github.com/One-2-3-45/One-2-3-45
|
77 |
-
cd One-2-3-45
|
78 |
-
```
|
79 |
-
</details>
|
80 |
-
|
81 |
-
<details>
|
82 |
-
<summary>Step 4: Install project dependencies using pip. </summary>
|
83 |
-
|
84 |
-
```bash
|
85 |
-
# Ensure that the installed CUDA version matches the torch's cuda version.
|
86 |
-
# Example: CUDA 11.8 installation
|
87 |
-
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
|
88 |
-
sudo sh cuda_11.8.0_520.61.05_linux.run
|
89 |
-
export PATH="/usr/local/cuda-11.8/bin:$PATH"
|
90 |
-
export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH"
|
91 |
-
# Install PyTorch 2.0
|
92 |
-
pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
93 |
-
# Install dependencies
|
94 |
-
pip install -r requirements.txt
|
95 |
-
# Install inplace_abn and torchsparse
|
96 |
-
export TORCH_CUDA_ARCH_LIST="7.0;7.2;8.0;8.6+PTX" # CUDA architectures. Modify according to your hardware.
|
97 |
-
export IABN_FORCE_CUDA=1
|
98 |
-
pip install inplace_abn
|
99 |
-
FORCE_CUDA=1 pip install --no-cache-dir git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0
|
100 |
-
```
|
101 |
-
</details>
|
102 |
-
|
103 |
-
<details>
|
104 |
-
<summary>Step 5: Download model checkpoints. </summary>
|
105 |
-
|
106 |
-
```bash
|
107 |
-
python download_ckpt.py
|
108 |
-
```
|
109 |
-
</details>
|
110 |
-
|
111 |
-
|
112 |
-
### Installation by Docker Images
|
113 |
-
<details>
|
114 |
-
<summary>Option 1: Pull and Play (environment and checkpoints). (~22.3G)</summary>
|
115 |
-
|
116 |
-
```bash
|
117 |
-
# Pull the Docker image that contains the full repository.
|
118 |
-
docker pull chaoxu98/one2345:demo_1.0
|
119 |
-
# An interactive demo will be launched automatically upon running the container.
|
120 |
-
# This will provide a public URL like XXXXXXX.gradio.live
|
121 |
-
docker run --name One-2-3-45_demo --gpus all -it chaoxu98/one2345:demo_1.0
|
122 |
-
```
|
123 |
-
</details>
|
124 |
-
|
125 |
-
<details>
|
126 |
-
<summary>Option 2: Environment Only. (~7.3G)</summary>
|
127 |
-
|
128 |
-
```bash
|
129 |
-
# Pull the Docker image that installed all project dependencies.
|
130 |
-
docker pull chaoxu98/one2345:1.0
|
131 |
-
# Start a Docker container named One2345.
|
132 |
-
docker run --name One-2-3-45 --gpus all -it chaoxu98/one2345:1.0
|
133 |
-
# Get a bash shell in the container.
|
134 |
-
docker exec -it One-2-3-45 /bin/bash
|
135 |
-
# Clone the repository to the local machine.
|
136 |
-
git clone https://github.com/One-2-3-45/One-2-3-45
|
137 |
-
cd One-2-3-45
|
138 |
-
# Download model checkpoints.
|
139 |
-
python download_ckpt.py
|
140 |
-
# Refer to getting started for inference.
|
141 |
-
```
|
142 |
-
</details>
|
143 |
-
|
144 |
-
## Getting Started (Inference)
|
145 |
-
|
146 |
-
First-time running will take longer time to compile the models.
|
147 |
-
|
148 |
-
Expected time cost per image: 40s on an NVIDIA A6000.
|
149 |
-
```bash
|
150 |
-
# 1. Script
|
151 |
-
python run.py --img_path PATH_TO_INPUT_IMG --half_precision
|
152 |
-
|
153 |
-
# 2. Interactive demo (Gradio) with a friendly web interface
|
154 |
-
# An URL will be provided in the output
|
155 |
-
# (Local: 127.0.0.1:7860; Public: XXXXXXX.gradio.live)
|
156 |
-
cd demo/
|
157 |
-
python app.py
|
158 |
-
|
159 |
-
# 3. Jupyter Notebook
|
160 |
-
example.ipynb
|
161 |
-
```
|
162 |
-
|
163 |
-
## Training Your Own Model
|
164 |
-
|
165 |
-
### Data Preparation
|
166 |
-
We use Objaverse-LVIS dataset for training and render the selected shapes (with CC-BY license) into 2D images with Blender.
|
167 |
-
#### Download the training images.
|
168 |
-
Download all One2345.zip.part-* files (5 files in total) from <a href="https://huggingface.co/datasets/One-2-3-45/training_data/tree/main">here</a> and then cat them into a single .zip file using the following command:
|
169 |
-
```bash
|
170 |
-
cat One2345.zip.part-* > One2345.zip
|
171 |
-
```
|
172 |
-
|
173 |
-
#### Unzip the training images zip file.
|
174 |
-
Unzip the zip file into a folder specified by yourself (`YOUR_BASE_FOLDER`) with the following command:
|
175 |
-
|
176 |
-
```bash
|
177 |
-
unzip One2345.zip -d YOUR_BASE_FOLDER
|
178 |
-
```
|
179 |
-
|
180 |
-
#### Download meta files.
|
181 |
-
|
182 |
-
Download `One2345_training_pose.json` and `lvis_split_cc_by.json` from <a href="https://huggingface.co/datasets/One-2-3-45/training_data/tree/main">here</a> and put them into the same folder as the training images (`YOUR_BASE_FOLDER`).
|
183 |
-
|
184 |
-
Your file structure should look like this:
|
185 |
-
```
|
186 |
-
# One2345 is your base folder used in the previous steps
|
187 |
-
|
188 |
-
One2345
|
189 |
-
├── One2345_training_pose.json
|
190 |
-
├── lvis_split_cc_by.json
|
191 |
-
└── zero12345_narrow
|
192 |
-
├── 000-000
|
193 |
-
├── 000-001
|
194 |
-
├── 000-002
|
195 |
-
...
|
196 |
-
└── 000-159
|
197 |
-
|
198 |
-
```
|
199 |
-
|
200 |
-
### Training
|
201 |
-
Specify the `trainpath`, `valpath`, and `testpath` in the config file `./reconstruction/confs/one2345_lod_train.conf` to be `YOUR_BASE_FOLDER` used in data preparation steps and run the following command:
|
202 |
-
```bash
|
203 |
-
cd reconstruction
|
204 |
-
python exp_runner_generic_blender_train.py --mode train --conf confs/one2345_lod_train.conf
|
205 |
-
```
|
206 |
-
Experiment logs and checkpoints will be saved in `./reconstruction/exp/`.
|
207 |
-
|
208 |
-
## Citation
|
209 |
-
|
210 |
-
If you find our code helpful, please cite our paper:
|
211 |
-
|
212 |
-
```
|
213 |
-
@misc{liu2023one2345,
|
214 |
-
title={One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization},
|
215 |
-
author={Minghua Liu and Chao Xu and Haian Jin and Linghao Chen and Mukund Varma T and Zexiang Xu and Hao Su},
|
216 |
-
year={2023},
|
217 |
-
eprint={2306.16928},
|
218 |
-
archivePrefix={arXiv},
|
219 |
-
primaryClass={cs.CV}
|
220 |
-
}
|
221 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/configs/sd-objaverse-finetune-c_concat-256.yaml
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-04
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "image_target"
|
11 |
-
cond_stage_key: "image_cond"
|
12 |
-
image_size: 32
|
13 |
-
channels: 4
|
14 |
-
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
-
conditioning_key: hybrid
|
16 |
-
monitor: val/loss_simple_ema
|
17 |
-
scale_factor: 0.18215
|
18 |
-
|
19 |
-
scheduler_config: # 10000 warmup steps
|
20 |
-
target: ldm.lr_scheduler.LambdaLinearScheduler
|
21 |
-
params:
|
22 |
-
warm_up_steps: [ 100 ]
|
23 |
-
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
24 |
-
f_start: [ 1.e-6 ]
|
25 |
-
f_max: [ 1. ]
|
26 |
-
f_min: [ 1. ]
|
27 |
-
|
28 |
-
unet_config:
|
29 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
30 |
-
params:
|
31 |
-
image_size: 32 # unused
|
32 |
-
in_channels: 8
|
33 |
-
out_channels: 4
|
34 |
-
model_channels: 320
|
35 |
-
attention_resolutions: [ 4, 2, 1 ]
|
36 |
-
num_res_blocks: 2
|
37 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
38 |
-
num_heads: 8
|
39 |
-
use_spatial_transformer: True
|
40 |
-
transformer_depth: 1
|
41 |
-
context_dim: 768
|
42 |
-
use_checkpoint: True
|
43 |
-
legacy: False
|
44 |
-
|
45 |
-
first_stage_config:
|
46 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
47 |
-
params:
|
48 |
-
embed_dim: 4
|
49 |
-
monitor: val/rec_loss
|
50 |
-
ddconfig:
|
51 |
-
double_z: true
|
52 |
-
z_channels: 4
|
53 |
-
resolution: 256
|
54 |
-
in_channels: 3
|
55 |
-
out_ch: 3
|
56 |
-
ch: 128
|
57 |
-
ch_mult:
|
58 |
-
- 1
|
59 |
-
- 2
|
60 |
-
- 4
|
61 |
-
- 4
|
62 |
-
num_res_blocks: 2
|
63 |
-
attn_resolutions: []
|
64 |
-
dropout: 0.0
|
65 |
-
lossconfig:
|
66 |
-
target: torch.nn.Identity
|
67 |
-
|
68 |
-
cond_stage_config:
|
69 |
-
target: ldm.modules.encoders.modules.FrozenCLIPImageEmbedder
|
70 |
-
|
71 |
-
|
72 |
-
data:
|
73 |
-
target: ldm.data.simple.ObjaverseDataModuleFromConfig
|
74 |
-
params:
|
75 |
-
root_dir: 'views_whole_sphere'
|
76 |
-
batch_size: 192
|
77 |
-
num_workers: 16
|
78 |
-
total_view: 4
|
79 |
-
train:
|
80 |
-
validation: False
|
81 |
-
image_transforms:
|
82 |
-
size: 256
|
83 |
-
|
84 |
-
validation:
|
85 |
-
validation: True
|
86 |
-
image_transforms:
|
87 |
-
size: 256
|
88 |
-
|
89 |
-
|
90 |
-
lightning:
|
91 |
-
find_unused_parameters: false
|
92 |
-
metrics_over_trainsteps_checkpoint: True
|
93 |
-
modelcheckpoint:
|
94 |
-
params:
|
95 |
-
every_n_train_steps: 5000
|
96 |
-
callbacks:
|
97 |
-
image_logger:
|
98 |
-
target: main.ImageLogger
|
99 |
-
params:
|
100 |
-
batch_frequency: 500
|
101 |
-
max_images: 32
|
102 |
-
increase_log_steps: False
|
103 |
-
log_first_step: True
|
104 |
-
log_images_kwargs:
|
105 |
-
use_ema_scope: False
|
106 |
-
inpaint: False
|
107 |
-
plot_progressive_rows: False
|
108 |
-
plot_diffusion_rows: False
|
109 |
-
N: 32
|
110 |
-
unconditional_guidance_scale: 3.0
|
111 |
-
unconditional_guidance_label: [""]
|
112 |
-
|
113 |
-
trainer:
|
114 |
-
benchmark: True
|
115 |
-
val_check_interval: 5000000 # really sorry
|
116 |
-
num_sanity_val_steps: 0
|
117 |
-
accumulate_grad_batches: 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/download_ckpt.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import urllib.request
|
2 |
-
from tqdm import tqdm
|
3 |
-
|
4 |
-
def download_checkpoint(url, save_path):
|
5 |
-
try:
|
6 |
-
with urllib.request.urlopen(url) as response, open(save_path, 'wb') as file:
|
7 |
-
file_size = int(response.info().get('Content-Length', -1))
|
8 |
-
chunk_size = 8192
|
9 |
-
num_chunks = file_size // chunk_size if file_size > chunk_size else 1
|
10 |
-
|
11 |
-
with tqdm(total=file_size, unit='B', unit_scale=True, desc='Downloading', ncols=100) as pbar:
|
12 |
-
for chunk in iter(lambda: response.read(chunk_size), b''):
|
13 |
-
file.write(chunk)
|
14 |
-
pbar.update(len(chunk))
|
15 |
-
|
16 |
-
print(f"Checkpoint downloaded and saved to: {save_path}")
|
17 |
-
except Exception as e:
|
18 |
-
print(f"Error downloading checkpoint: {e}")
|
19 |
-
|
20 |
-
if __name__ == "__main__":
|
21 |
-
ckpts = {
|
22 |
-
"sam_vit_h_4b8939.pth": "https://huggingface.co/One-2-3-45/code/resolve/main/sam_vit_h_4b8939.pth",
|
23 |
-
"zero123-xl.ckpt": "https://huggingface.co/One-2-3-45/code/resolve/main/zero123-xl.ckpt",
|
24 |
-
"elevation_estimate/utils/weights/indoor_ds_new.ckpt" : "https://huggingface.co/One-2-3-45/code/resolve/main/one2345_elev_est/tools/weights/indoor_ds_new.ckpt",
|
25 |
-
"reconstruction/exp/lod0/checkpoints/ckpt_215000.pth": "https://huggingface.co/One-2-3-45/code/resolve/main/SparseNeuS_demo_v1/exp/lod0/checkpoints/ckpt_215000.pth"
|
26 |
-
}
|
27 |
-
for ckpt_name, ckpt_url in ckpts.items():
|
28 |
-
print(f"Downloading checkpoint: {ckpt_name}")
|
29 |
-
download_checkpoint(ckpt_url, ckpt_name)
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/.gitignore
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
build/
|
2 |
-
.idea/
|
3 |
-
*.egg-info/
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/__init__.py
DELETED
File without changes
|
One-2-3-45-master 2/elevation_estimate/estimate_wild_imgs.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
import os.path as osp
|
2 |
-
from .utils.elev_est_api import elev_est_api
|
3 |
-
|
4 |
-
def estimate_elev(root_dir):
|
5 |
-
img_dir = osp.join(root_dir, "stage2_8")
|
6 |
-
img_paths = []
|
7 |
-
for i in range(4):
|
8 |
-
img_paths.append(f"{img_dir}/0_{i}.png")
|
9 |
-
elev = elev_est_api(img_paths)
|
10 |
-
return elev
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/__init__.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .loftr import LoFTR
|
2 |
-
from .utils.cvpr_ds_config import default_cfg
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/backbone/__init__.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
from .resnet_fpn import ResNetFPN_8_2, ResNetFPN_16_4
|
2 |
-
|
3 |
-
|
4 |
-
def build_backbone(config):
|
5 |
-
if config['backbone_type'] == 'ResNetFPN':
|
6 |
-
if config['resolution'] == (8, 2):
|
7 |
-
return ResNetFPN_8_2(config['resnetfpn'])
|
8 |
-
elif config['resolution'] == (16, 4):
|
9 |
-
return ResNetFPN_16_4(config['resnetfpn'])
|
10 |
-
else:
|
11 |
-
raise ValueError(f"LOFTR.BACKBONE_TYPE {config['backbone_type']} not supported.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/backbone/resnet_fpn.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import torch.nn.functional as F
|
3 |
-
|
4 |
-
|
5 |
-
def conv1x1(in_planes, out_planes, stride=1):
|
6 |
-
"""1x1 convolution without padding"""
|
7 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False)
|
8 |
-
|
9 |
-
|
10 |
-
def conv3x3(in_planes, out_planes, stride=1):
|
11 |
-
"""3x3 convolution with padding"""
|
12 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
13 |
-
|
14 |
-
|
15 |
-
class BasicBlock(nn.Module):
|
16 |
-
def __init__(self, in_planes, planes, stride=1):
|
17 |
-
super().__init__()
|
18 |
-
self.conv1 = conv3x3(in_planes, planes, stride)
|
19 |
-
self.conv2 = conv3x3(planes, planes)
|
20 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
21 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
22 |
-
self.relu = nn.ReLU(inplace=True)
|
23 |
-
|
24 |
-
if stride == 1:
|
25 |
-
self.downsample = None
|
26 |
-
else:
|
27 |
-
self.downsample = nn.Sequential(
|
28 |
-
conv1x1(in_planes, planes, stride=stride),
|
29 |
-
nn.BatchNorm2d(planes)
|
30 |
-
)
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
y = x
|
34 |
-
y = self.relu(self.bn1(self.conv1(y)))
|
35 |
-
y = self.bn2(self.conv2(y))
|
36 |
-
|
37 |
-
if self.downsample is not None:
|
38 |
-
x = self.downsample(x)
|
39 |
-
|
40 |
-
return self.relu(x+y)
|
41 |
-
|
42 |
-
|
43 |
-
class ResNetFPN_8_2(nn.Module):
|
44 |
-
"""
|
45 |
-
ResNet+FPN, output resolution are 1/8 and 1/2.
|
46 |
-
Each block has 2 layers.
|
47 |
-
"""
|
48 |
-
|
49 |
-
def __init__(self, config):
|
50 |
-
super().__init__()
|
51 |
-
# Config
|
52 |
-
block = BasicBlock
|
53 |
-
initial_dim = config['initial_dim']
|
54 |
-
block_dims = config['block_dims']
|
55 |
-
|
56 |
-
# Class Variable
|
57 |
-
self.in_planes = initial_dim
|
58 |
-
|
59 |
-
# Networks
|
60 |
-
self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
|
61 |
-
self.bn1 = nn.BatchNorm2d(initial_dim)
|
62 |
-
self.relu = nn.ReLU(inplace=True)
|
63 |
-
|
64 |
-
self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2
|
65 |
-
self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4
|
66 |
-
self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8
|
67 |
-
|
68 |
-
# 3. FPN upsample
|
69 |
-
self.layer3_outconv = conv1x1(block_dims[2], block_dims[2])
|
70 |
-
self.layer2_outconv = conv1x1(block_dims[1], block_dims[2])
|
71 |
-
self.layer2_outconv2 = nn.Sequential(
|
72 |
-
conv3x3(block_dims[2], block_dims[2]),
|
73 |
-
nn.BatchNorm2d(block_dims[2]),
|
74 |
-
nn.LeakyReLU(),
|
75 |
-
conv3x3(block_dims[2], block_dims[1]),
|
76 |
-
)
|
77 |
-
self.layer1_outconv = conv1x1(block_dims[0], block_dims[1])
|
78 |
-
self.layer1_outconv2 = nn.Sequential(
|
79 |
-
conv3x3(block_dims[1], block_dims[1]),
|
80 |
-
nn.BatchNorm2d(block_dims[1]),
|
81 |
-
nn.LeakyReLU(),
|
82 |
-
conv3x3(block_dims[1], block_dims[0]),
|
83 |
-
)
|
84 |
-
|
85 |
-
for m in self.modules():
|
86 |
-
if isinstance(m, nn.Conv2d):
|
87 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
88 |
-
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
89 |
-
nn.init.constant_(m.weight, 1)
|
90 |
-
nn.init.constant_(m.bias, 0)
|
91 |
-
|
92 |
-
def _make_layer(self, block, dim, stride=1):
|
93 |
-
layer1 = block(self.in_planes, dim, stride=stride)
|
94 |
-
layer2 = block(dim, dim, stride=1)
|
95 |
-
layers = (layer1, layer2)
|
96 |
-
|
97 |
-
self.in_planes = dim
|
98 |
-
return nn.Sequential(*layers)
|
99 |
-
|
100 |
-
def forward(self, x):
|
101 |
-
# ResNet Backbone
|
102 |
-
x0 = self.relu(self.bn1(self.conv1(x)))
|
103 |
-
x1 = self.layer1(x0) # 1/2
|
104 |
-
x2 = self.layer2(x1) # 1/4
|
105 |
-
x3 = self.layer3(x2) # 1/8
|
106 |
-
|
107 |
-
# FPN
|
108 |
-
x3_out = self.layer3_outconv(x3)
|
109 |
-
|
110 |
-
x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True)
|
111 |
-
x2_out = self.layer2_outconv(x2)
|
112 |
-
x2_out = self.layer2_outconv2(x2_out+x3_out_2x)
|
113 |
-
|
114 |
-
x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True)
|
115 |
-
x1_out = self.layer1_outconv(x1)
|
116 |
-
x1_out = self.layer1_outconv2(x1_out+x2_out_2x)
|
117 |
-
|
118 |
-
return [x3_out, x1_out]
|
119 |
-
|
120 |
-
|
121 |
-
class ResNetFPN_16_4(nn.Module):
|
122 |
-
"""
|
123 |
-
ResNet+FPN, output resolution are 1/16 and 1/4.
|
124 |
-
Each block has 2 layers.
|
125 |
-
"""
|
126 |
-
|
127 |
-
def __init__(self, config):
|
128 |
-
super().__init__()
|
129 |
-
# Config
|
130 |
-
block = BasicBlock
|
131 |
-
initial_dim = config['initial_dim']
|
132 |
-
block_dims = config['block_dims']
|
133 |
-
|
134 |
-
# Class Variable
|
135 |
-
self.in_planes = initial_dim
|
136 |
-
|
137 |
-
# Networks
|
138 |
-
self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False)
|
139 |
-
self.bn1 = nn.BatchNorm2d(initial_dim)
|
140 |
-
self.relu = nn.ReLU(inplace=True)
|
141 |
-
|
142 |
-
self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2
|
143 |
-
self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4
|
144 |
-
self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8
|
145 |
-
self.layer4 = self._make_layer(block, block_dims[3], stride=2) # 1/16
|
146 |
-
|
147 |
-
# 3. FPN upsample
|
148 |
-
self.layer4_outconv = conv1x1(block_dims[3], block_dims[3])
|
149 |
-
self.layer3_outconv = conv1x1(block_dims[2], block_dims[3])
|
150 |
-
self.layer3_outconv2 = nn.Sequential(
|
151 |
-
conv3x3(block_dims[3], block_dims[3]),
|
152 |
-
nn.BatchNorm2d(block_dims[3]),
|
153 |
-
nn.LeakyReLU(),
|
154 |
-
conv3x3(block_dims[3], block_dims[2]),
|
155 |
-
)
|
156 |
-
|
157 |
-
self.layer2_outconv = conv1x1(block_dims[1], block_dims[2])
|
158 |
-
self.layer2_outconv2 = nn.Sequential(
|
159 |
-
conv3x3(block_dims[2], block_dims[2]),
|
160 |
-
nn.BatchNorm2d(block_dims[2]),
|
161 |
-
nn.LeakyReLU(),
|
162 |
-
conv3x3(block_dims[2], block_dims[1]),
|
163 |
-
)
|
164 |
-
|
165 |
-
for m in self.modules():
|
166 |
-
if isinstance(m, nn.Conv2d):
|
167 |
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
168 |
-
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
169 |
-
nn.init.constant_(m.weight, 1)
|
170 |
-
nn.init.constant_(m.bias, 0)
|
171 |
-
|
172 |
-
def _make_layer(self, block, dim, stride=1):
|
173 |
-
layer1 = block(self.in_planes, dim, stride=stride)
|
174 |
-
layer2 = block(dim, dim, stride=1)
|
175 |
-
layers = (layer1, layer2)
|
176 |
-
|
177 |
-
self.in_planes = dim
|
178 |
-
return nn.Sequential(*layers)
|
179 |
-
|
180 |
-
def forward(self, x):
|
181 |
-
# ResNet Backbone
|
182 |
-
x0 = self.relu(self.bn1(self.conv1(x)))
|
183 |
-
x1 = self.layer1(x0) # 1/2
|
184 |
-
x2 = self.layer2(x1) # 1/4
|
185 |
-
x3 = self.layer3(x2) # 1/8
|
186 |
-
x4 = self.layer4(x3) # 1/16
|
187 |
-
|
188 |
-
# FPN
|
189 |
-
x4_out = self.layer4_outconv(x4)
|
190 |
-
|
191 |
-
x4_out_2x = F.interpolate(x4_out, scale_factor=2., mode='bilinear', align_corners=True)
|
192 |
-
x3_out = self.layer3_outconv(x3)
|
193 |
-
x3_out = self.layer3_outconv2(x3_out+x4_out_2x)
|
194 |
-
|
195 |
-
x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True)
|
196 |
-
x2_out = self.layer2_outconv(x2)
|
197 |
-
x2_out = self.layer2_outconv2(x2_out+x3_out_2x)
|
198 |
-
|
199 |
-
return [x4_out, x2_out]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from einops.einops import rearrange
|
4 |
-
|
5 |
-
from .backbone import build_backbone
|
6 |
-
from .utils.position_encoding import PositionEncodingSine
|
7 |
-
from .loftr_module import LocalFeatureTransformer, FinePreprocess
|
8 |
-
from .utils.coarse_matching import CoarseMatching
|
9 |
-
from .utils.fine_matching import FineMatching
|
10 |
-
|
11 |
-
|
12 |
-
class LoFTR(nn.Module):
|
13 |
-
def __init__(self, config):
|
14 |
-
super().__init__()
|
15 |
-
# Misc
|
16 |
-
self.config = config
|
17 |
-
|
18 |
-
# Modules
|
19 |
-
self.backbone = build_backbone(config)
|
20 |
-
self.pos_encoding = PositionEncodingSine(
|
21 |
-
config['coarse']['d_model'],
|
22 |
-
temp_bug_fix=config['coarse']['temp_bug_fix'])
|
23 |
-
self.loftr_coarse = LocalFeatureTransformer(config['coarse'])
|
24 |
-
self.coarse_matching = CoarseMatching(config['match_coarse'])
|
25 |
-
self.fine_preprocess = FinePreprocess(config)
|
26 |
-
self.loftr_fine = LocalFeatureTransformer(config["fine"])
|
27 |
-
self.fine_matching = FineMatching()
|
28 |
-
|
29 |
-
def forward(self, data):
|
30 |
-
"""
|
31 |
-
Update:
|
32 |
-
data (dict): {
|
33 |
-
'image0': (torch.Tensor): (N, 1, H, W)
|
34 |
-
'image1': (torch.Tensor): (N, 1, H, W)
|
35 |
-
'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position
|
36 |
-
'mask1'(optional) : (torch.Tensor): (N, H, W)
|
37 |
-
}
|
38 |
-
"""
|
39 |
-
# 1. Local Feature CNN
|
40 |
-
data.update({
|
41 |
-
'bs': data['image0'].size(0),
|
42 |
-
'hw0_i': data['image0'].shape[2:], 'hw1_i': data['image1'].shape[2:]
|
43 |
-
})
|
44 |
-
|
45 |
-
if data['hw0_i'] == data['hw1_i']: # faster & better BN convergence
|
46 |
-
feats_c, feats_f = self.backbone(torch.cat([data['image0'], data['image1']], dim=0))
|
47 |
-
(feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split(data['bs']), feats_f.split(data['bs'])
|
48 |
-
else: # handle different input shapes
|
49 |
-
(feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone(data['image0']), self.backbone(data['image1'])
|
50 |
-
|
51 |
-
data.update({
|
52 |
-
'hw0_c': feat_c0.shape[2:], 'hw1_c': feat_c1.shape[2:],
|
53 |
-
'hw0_f': feat_f0.shape[2:], 'hw1_f': feat_f1.shape[2:]
|
54 |
-
})
|
55 |
-
|
56 |
-
# 2. coarse-level loftr module
|
57 |
-
# add featmap with positional encoding, then flatten it to sequence [N, HW, C]
|
58 |
-
feat_c0 = rearrange(self.pos_encoding(feat_c0), 'n c h w -> n (h w) c')
|
59 |
-
feat_c1 = rearrange(self.pos_encoding(feat_c1), 'n c h w -> n (h w) c')
|
60 |
-
|
61 |
-
mask_c0 = mask_c1 = None # mask is useful in training
|
62 |
-
if 'mask0' in data:
|
63 |
-
mask_c0, mask_c1 = data['mask0'].flatten(-2), data['mask1'].flatten(-2)
|
64 |
-
feat_c0, feat_c1 = self.loftr_coarse(feat_c0, feat_c1, mask_c0, mask_c1)
|
65 |
-
|
66 |
-
# 3. match coarse-level
|
67 |
-
self.coarse_matching(feat_c0, feat_c1, data, mask_c0=mask_c0, mask_c1=mask_c1)
|
68 |
-
|
69 |
-
# 4. fine-level refinement
|
70 |
-
feat_f0_unfold, feat_f1_unfold = self.fine_preprocess(feat_f0, feat_f1, feat_c0, feat_c1, data)
|
71 |
-
if feat_f0_unfold.size(0) != 0: # at least one coarse level predicted
|
72 |
-
feat_f0_unfold, feat_f1_unfold = self.loftr_fine(feat_f0_unfold, feat_f1_unfold)
|
73 |
-
|
74 |
-
# 5. match fine-level
|
75 |
-
self.fine_matching(feat_f0_unfold, feat_f1_unfold, data)
|
76 |
-
|
77 |
-
def load_state_dict(self, state_dict, *args, **kwargs):
|
78 |
-
for k in list(state_dict.keys()):
|
79 |
-
if k.startswith('matcher.'):
|
80 |
-
state_dict[k.replace('matcher.', '', 1)] = state_dict.pop(k)
|
81 |
-
return super().load_state_dict(state_dict, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/__init__.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .transformer import LocalFeatureTransformer
|
2 |
-
from .fine_preprocess import FinePreprocess
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/fine_preprocess.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from einops.einops import rearrange, repeat
|
5 |
-
|
6 |
-
|
7 |
-
class FinePreprocess(nn.Module):
|
8 |
-
def __init__(self, config):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
self.config = config
|
12 |
-
self.cat_c_feat = config['fine_concat_coarse_feat']
|
13 |
-
self.W = self.config['fine_window_size']
|
14 |
-
|
15 |
-
d_model_c = self.config['coarse']['d_model']
|
16 |
-
d_model_f = self.config['fine']['d_model']
|
17 |
-
self.d_model_f = d_model_f
|
18 |
-
if self.cat_c_feat:
|
19 |
-
self.down_proj = nn.Linear(d_model_c, d_model_f, bias=True)
|
20 |
-
self.merge_feat = nn.Linear(2*d_model_f, d_model_f, bias=True)
|
21 |
-
|
22 |
-
self._reset_parameters()
|
23 |
-
|
24 |
-
def _reset_parameters(self):
|
25 |
-
for p in self.parameters():
|
26 |
-
if p.dim() > 1:
|
27 |
-
nn.init.kaiming_normal_(p, mode="fan_out", nonlinearity="relu")
|
28 |
-
|
29 |
-
def forward(self, feat_f0, feat_f1, feat_c0, feat_c1, data):
|
30 |
-
W = self.W
|
31 |
-
stride = data['hw0_f'][0] // data['hw0_c'][0]
|
32 |
-
|
33 |
-
data.update({'W': W})
|
34 |
-
if data['b_ids'].shape[0] == 0:
|
35 |
-
feat0 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device)
|
36 |
-
feat1 = torch.empty(0, self.W**2, self.d_model_f, device=feat_f0.device)
|
37 |
-
return feat0, feat1
|
38 |
-
|
39 |
-
# 1. unfold(crop) all local windows
|
40 |
-
feat_f0_unfold = F.unfold(feat_f0, kernel_size=(W, W), stride=stride, padding=W//2)
|
41 |
-
feat_f0_unfold = rearrange(feat_f0_unfold, 'n (c ww) l -> n l ww c', ww=W**2)
|
42 |
-
feat_f1_unfold = F.unfold(feat_f1, kernel_size=(W, W), stride=stride, padding=W//2)
|
43 |
-
feat_f1_unfold = rearrange(feat_f1_unfold, 'n (c ww) l -> n l ww c', ww=W**2)
|
44 |
-
|
45 |
-
# 2. select only the predicted matches
|
46 |
-
feat_f0_unfold = feat_f0_unfold[data['b_ids'], data['i_ids']] # [n, ww, cf]
|
47 |
-
feat_f1_unfold = feat_f1_unfold[data['b_ids'], data['j_ids']]
|
48 |
-
|
49 |
-
# option: use coarse-level loftr feature as context: concat and linear
|
50 |
-
if self.cat_c_feat:
|
51 |
-
feat_c_win = self.down_proj(torch.cat([feat_c0[data['b_ids'], data['i_ids']],
|
52 |
-
feat_c1[data['b_ids'], data['j_ids']]], 0)) # [2n, c]
|
53 |
-
feat_cf_win = self.merge_feat(torch.cat([
|
54 |
-
torch.cat([feat_f0_unfold, feat_f1_unfold], 0), # [2n, ww, cf]
|
55 |
-
repeat(feat_c_win, 'n c -> n ww c', ww=W**2), # [2n, ww, cf]
|
56 |
-
], -1))
|
57 |
-
feat_f0_unfold, feat_f1_unfold = torch.chunk(feat_cf_win, 2, dim=0)
|
58 |
-
|
59 |
-
return feat_f0_unfold, feat_f1_unfold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/linear_attention.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Linear Transformer proposed in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention"
|
3 |
-
Modified from: https://github.com/idiap/fast-transformers/blob/master/fast_transformers/attention/linear_attention.py
|
4 |
-
"""
|
5 |
-
|
6 |
-
import torch
|
7 |
-
from torch.nn import Module, Dropout
|
8 |
-
|
9 |
-
|
10 |
-
def elu_feature_map(x):
|
11 |
-
return torch.nn.functional.elu(x) + 1
|
12 |
-
|
13 |
-
|
14 |
-
class LinearAttention(Module):
|
15 |
-
def __init__(self, eps=1e-6):
|
16 |
-
super().__init__()
|
17 |
-
self.feature_map = elu_feature_map
|
18 |
-
self.eps = eps
|
19 |
-
|
20 |
-
def forward(self, queries, keys, values, q_mask=None, kv_mask=None):
|
21 |
-
""" Multi-Head linear attention proposed in "Transformers are RNNs"
|
22 |
-
Args:
|
23 |
-
queries: [N, L, H, D]
|
24 |
-
keys: [N, S, H, D]
|
25 |
-
values: [N, S, H, D]
|
26 |
-
q_mask: [N, L]
|
27 |
-
kv_mask: [N, S]
|
28 |
-
Returns:
|
29 |
-
queried_values: (N, L, H, D)
|
30 |
-
"""
|
31 |
-
Q = self.feature_map(queries)
|
32 |
-
K = self.feature_map(keys)
|
33 |
-
|
34 |
-
# set padded position to zero
|
35 |
-
if q_mask is not None:
|
36 |
-
Q = Q * q_mask[:, :, None, None]
|
37 |
-
if kv_mask is not None:
|
38 |
-
K = K * kv_mask[:, :, None, None]
|
39 |
-
values = values * kv_mask[:, :, None, None]
|
40 |
-
|
41 |
-
v_length = values.size(1)
|
42 |
-
values = values / v_length # prevent fp16 overflow
|
43 |
-
KV = torch.einsum("nshd,nshv->nhdv", K, values) # (S,D)' @ S,V
|
44 |
-
Z = 1 / (torch.einsum("nlhd,nhd->nlh", Q, K.sum(dim=1)) + self.eps)
|
45 |
-
queried_values = torch.einsum("nlhd,nhdv,nlh->nlhv", Q, KV, Z) * v_length
|
46 |
-
|
47 |
-
return queried_values.contiguous()
|
48 |
-
|
49 |
-
|
50 |
-
class FullAttention(Module):
|
51 |
-
def __init__(self, use_dropout=False, attention_dropout=0.1):
|
52 |
-
super().__init__()
|
53 |
-
self.use_dropout = use_dropout
|
54 |
-
self.dropout = Dropout(attention_dropout)
|
55 |
-
|
56 |
-
def forward(self, queries, keys, values, q_mask=None, kv_mask=None):
|
57 |
-
""" Multi-head scaled dot-product attention, a.k.a full attention.
|
58 |
-
Args:
|
59 |
-
queries: [N, L, H, D]
|
60 |
-
keys: [N, S, H, D]
|
61 |
-
values: [N, S, H, D]
|
62 |
-
q_mask: [N, L]
|
63 |
-
kv_mask: [N, S]
|
64 |
-
Returns:
|
65 |
-
queried_values: (N, L, H, D)
|
66 |
-
"""
|
67 |
-
|
68 |
-
# Compute the unnormalized attention and apply the masks
|
69 |
-
QK = torch.einsum("nlhd,nshd->nlsh", queries, keys)
|
70 |
-
if kv_mask is not None:
|
71 |
-
QK.masked_fill_(~(q_mask[:, :, None, None] * kv_mask[:, None, :, None]), float('-inf'))
|
72 |
-
|
73 |
-
# Compute the attention and the weighted average
|
74 |
-
softmax_temp = 1. / queries.size(3)**.5 # sqrt(D)
|
75 |
-
A = torch.softmax(softmax_temp * QK, dim=2)
|
76 |
-
if self.use_dropout:
|
77 |
-
A = self.dropout(A)
|
78 |
-
|
79 |
-
queried_values = torch.einsum("nlsh,nshd->nlhd", A, values)
|
80 |
-
|
81 |
-
return queried_values.contiguous()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/loftr_module/transformer.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from .linear_attention import LinearAttention, FullAttention
|
5 |
-
|
6 |
-
|
7 |
-
class LoFTREncoderLayer(nn.Module):
|
8 |
-
def __init__(self,
|
9 |
-
d_model,
|
10 |
-
nhead,
|
11 |
-
attention='linear'):
|
12 |
-
super(LoFTREncoderLayer, self).__init__()
|
13 |
-
|
14 |
-
self.dim = d_model // nhead
|
15 |
-
self.nhead = nhead
|
16 |
-
|
17 |
-
# multi-head attention
|
18 |
-
self.q_proj = nn.Linear(d_model, d_model, bias=False)
|
19 |
-
self.k_proj = nn.Linear(d_model, d_model, bias=False)
|
20 |
-
self.v_proj = nn.Linear(d_model, d_model, bias=False)
|
21 |
-
self.attention = LinearAttention() if attention == 'linear' else FullAttention()
|
22 |
-
self.merge = nn.Linear(d_model, d_model, bias=False)
|
23 |
-
|
24 |
-
# feed-forward network
|
25 |
-
self.mlp = nn.Sequential(
|
26 |
-
nn.Linear(d_model*2, d_model*2, bias=False),
|
27 |
-
nn.ReLU(True),
|
28 |
-
nn.Linear(d_model*2, d_model, bias=False),
|
29 |
-
)
|
30 |
-
|
31 |
-
# norm and dropout
|
32 |
-
self.norm1 = nn.LayerNorm(d_model)
|
33 |
-
self.norm2 = nn.LayerNorm(d_model)
|
34 |
-
|
35 |
-
def forward(self, x, source, x_mask=None, source_mask=None):
|
36 |
-
"""
|
37 |
-
Args:
|
38 |
-
x (torch.Tensor): [N, L, C]
|
39 |
-
source (torch.Tensor): [N, S, C]
|
40 |
-
x_mask (torch.Tensor): [N, L] (optional)
|
41 |
-
source_mask (torch.Tensor): [N, S] (optional)
|
42 |
-
"""
|
43 |
-
bs = x.size(0)
|
44 |
-
query, key, value = x, source, source
|
45 |
-
|
46 |
-
# multi-head attention
|
47 |
-
query = self.q_proj(query).view(bs, -1, self.nhead, self.dim) # [N, L, (H, D)]
|
48 |
-
key = self.k_proj(key).view(bs, -1, self.nhead, self.dim) # [N, S, (H, D)]
|
49 |
-
value = self.v_proj(value).view(bs, -1, self.nhead, self.dim)
|
50 |
-
message = self.attention(query, key, value, q_mask=x_mask, kv_mask=source_mask) # [N, L, (H, D)]
|
51 |
-
message = self.merge(message.view(bs, -1, self.nhead*self.dim)) # [N, L, C]
|
52 |
-
message = self.norm1(message)
|
53 |
-
|
54 |
-
# feed-forward network
|
55 |
-
message = self.mlp(torch.cat([x, message], dim=2))
|
56 |
-
message = self.norm2(message)
|
57 |
-
|
58 |
-
return x + message
|
59 |
-
|
60 |
-
|
61 |
-
class LocalFeatureTransformer(nn.Module):
|
62 |
-
"""A Local Feature Transformer (LoFTR) module."""
|
63 |
-
|
64 |
-
def __init__(self, config):
|
65 |
-
super(LocalFeatureTransformer, self).__init__()
|
66 |
-
|
67 |
-
self.config = config
|
68 |
-
self.d_model = config['d_model']
|
69 |
-
self.nhead = config['nhead']
|
70 |
-
self.layer_names = config['layer_names']
|
71 |
-
encoder_layer = LoFTREncoderLayer(config['d_model'], config['nhead'], config['attention'])
|
72 |
-
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(len(self.layer_names))])
|
73 |
-
self._reset_parameters()
|
74 |
-
|
75 |
-
def _reset_parameters(self):
|
76 |
-
for p in self.parameters():
|
77 |
-
if p.dim() > 1:
|
78 |
-
nn.init.xavier_uniform_(p)
|
79 |
-
|
80 |
-
def forward(self, feat0, feat1, mask0=None, mask1=None):
|
81 |
-
"""
|
82 |
-
Args:
|
83 |
-
feat0 (torch.Tensor): [N, L, C]
|
84 |
-
feat1 (torch.Tensor): [N, S, C]
|
85 |
-
mask0 (torch.Tensor): [N, L] (optional)
|
86 |
-
mask1 (torch.Tensor): [N, S] (optional)
|
87 |
-
"""
|
88 |
-
|
89 |
-
assert self.d_model == feat0.size(2), "the feature number of src and transformer must be equal"
|
90 |
-
|
91 |
-
for layer, name in zip(self.layers, self.layer_names):
|
92 |
-
if name == 'self':
|
93 |
-
feat0 = layer(feat0, feat0, mask0, mask0)
|
94 |
-
feat1 = layer(feat1, feat1, mask1, mask1)
|
95 |
-
elif name == 'cross':
|
96 |
-
feat0 = layer(feat0, feat1, mask0, mask1)
|
97 |
-
feat1 = layer(feat1, feat0, mask1, mask0)
|
98 |
-
else:
|
99 |
-
raise KeyError
|
100 |
-
|
101 |
-
return feat0, feat1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/coarse_matching.py
DELETED
@@ -1,261 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from einops.einops import rearrange
|
5 |
-
|
6 |
-
INF = 1e9
|
7 |
-
|
8 |
-
def mask_border(m, b: int, v):
|
9 |
-
""" Mask borders with value
|
10 |
-
Args:
|
11 |
-
m (torch.Tensor): [N, H0, W0, H1, W1]
|
12 |
-
b (int)
|
13 |
-
v (m.dtype)
|
14 |
-
"""
|
15 |
-
if b <= 0:
|
16 |
-
return
|
17 |
-
|
18 |
-
m[:, :b] = v
|
19 |
-
m[:, :, :b] = v
|
20 |
-
m[:, :, :, :b] = v
|
21 |
-
m[:, :, :, :, :b] = v
|
22 |
-
m[:, -b:] = v
|
23 |
-
m[:, :, -b:] = v
|
24 |
-
m[:, :, :, -b:] = v
|
25 |
-
m[:, :, :, :, -b:] = v
|
26 |
-
|
27 |
-
|
28 |
-
def mask_border_with_padding(m, bd, v, p_m0, p_m1):
|
29 |
-
if bd <= 0:
|
30 |
-
return
|
31 |
-
|
32 |
-
m[:, :bd] = v
|
33 |
-
m[:, :, :bd] = v
|
34 |
-
m[:, :, :, :bd] = v
|
35 |
-
m[:, :, :, :, :bd] = v
|
36 |
-
|
37 |
-
h0s, w0s = p_m0.sum(1).max(-1)[0].int(), p_m0.sum(-1).max(-1)[0].int()
|
38 |
-
h1s, w1s = p_m1.sum(1).max(-1)[0].int(), p_m1.sum(-1).max(-1)[0].int()
|
39 |
-
for b_idx, (h0, w0, h1, w1) in enumerate(zip(h0s, w0s, h1s, w1s)):
|
40 |
-
m[b_idx, h0 - bd:] = v
|
41 |
-
m[b_idx, :, w0 - bd:] = v
|
42 |
-
m[b_idx, :, :, h1 - bd:] = v
|
43 |
-
m[b_idx, :, :, :, w1 - bd:] = v
|
44 |
-
|
45 |
-
|
46 |
-
def compute_max_candidates(p_m0, p_m1):
|
47 |
-
"""Compute the max candidates of all pairs within a batch
|
48 |
-
|
49 |
-
Args:
|
50 |
-
p_m0, p_m1 (torch.Tensor): padded masks
|
51 |
-
"""
|
52 |
-
h0s, w0s = p_m0.sum(1).max(-1)[0], p_m0.sum(-1).max(-1)[0]
|
53 |
-
h1s, w1s = p_m1.sum(1).max(-1)[0], p_m1.sum(-1).max(-1)[0]
|
54 |
-
max_cand = torch.sum(
|
55 |
-
torch.min(torch.stack([h0s * w0s, h1s * w1s], -1), -1)[0])
|
56 |
-
return max_cand
|
57 |
-
|
58 |
-
|
59 |
-
class CoarseMatching(nn.Module):
|
60 |
-
def __init__(self, config):
|
61 |
-
super().__init__()
|
62 |
-
self.config = config
|
63 |
-
# general config
|
64 |
-
self.thr = config['thr']
|
65 |
-
self.border_rm = config['border_rm']
|
66 |
-
# -- # for trainig fine-level LoFTR
|
67 |
-
self.train_coarse_percent = config['train_coarse_percent']
|
68 |
-
self.train_pad_num_gt_min = config['train_pad_num_gt_min']
|
69 |
-
|
70 |
-
# we provide 2 options for differentiable matching
|
71 |
-
self.match_type = config['match_type']
|
72 |
-
if self.match_type == 'dual_softmax':
|
73 |
-
self.temperature = config['dsmax_temperature']
|
74 |
-
elif self.match_type == 'sinkhorn':
|
75 |
-
try:
|
76 |
-
from .superglue import log_optimal_transport
|
77 |
-
except ImportError:
|
78 |
-
raise ImportError("download superglue.py first!")
|
79 |
-
self.log_optimal_transport = log_optimal_transport
|
80 |
-
self.bin_score = nn.Parameter(
|
81 |
-
torch.tensor(config['skh_init_bin_score'], requires_grad=True))
|
82 |
-
self.skh_iters = config['skh_iters']
|
83 |
-
self.skh_prefilter = config['skh_prefilter']
|
84 |
-
else:
|
85 |
-
raise NotImplementedError()
|
86 |
-
|
87 |
-
def forward(self, feat_c0, feat_c1, data, mask_c0=None, mask_c1=None):
|
88 |
-
"""
|
89 |
-
Args:
|
90 |
-
feat0 (torch.Tensor): [N, L, C]
|
91 |
-
feat1 (torch.Tensor): [N, S, C]
|
92 |
-
data (dict)
|
93 |
-
mask_c0 (torch.Tensor): [N, L] (optional)
|
94 |
-
mask_c1 (torch.Tensor): [N, S] (optional)
|
95 |
-
Update:
|
96 |
-
data (dict): {
|
97 |
-
'b_ids' (torch.Tensor): [M'],
|
98 |
-
'i_ids' (torch.Tensor): [M'],
|
99 |
-
'j_ids' (torch.Tensor): [M'],
|
100 |
-
'gt_mask' (torch.Tensor): [M'],
|
101 |
-
'mkpts0_c' (torch.Tensor): [M, 2],
|
102 |
-
'mkpts1_c' (torch.Tensor): [M, 2],
|
103 |
-
'mconf' (torch.Tensor): [M]}
|
104 |
-
NOTE: M' != M during training.
|
105 |
-
"""
|
106 |
-
N, L, S, C = feat_c0.size(0), feat_c0.size(1), feat_c1.size(1), feat_c0.size(2)
|
107 |
-
|
108 |
-
# normalize
|
109 |
-
feat_c0, feat_c1 = map(lambda feat: feat / feat.shape[-1]**.5,
|
110 |
-
[feat_c0, feat_c1])
|
111 |
-
|
112 |
-
if self.match_type == 'dual_softmax':
|
113 |
-
sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0,
|
114 |
-
feat_c1) / self.temperature
|
115 |
-
if mask_c0 is not None:
|
116 |
-
sim_matrix.masked_fill_(
|
117 |
-
~(mask_c0[..., None] * mask_c1[:, None]).bool(),
|
118 |
-
-INF)
|
119 |
-
conf_matrix = F.softmax(sim_matrix, 1) * F.softmax(sim_matrix, 2)
|
120 |
-
|
121 |
-
elif self.match_type == 'sinkhorn':
|
122 |
-
# sinkhorn, dustbin included
|
123 |
-
sim_matrix = torch.einsum("nlc,nsc->nls", feat_c0, feat_c1)
|
124 |
-
if mask_c0 is not None:
|
125 |
-
sim_matrix[:, :L, :S].masked_fill_(
|
126 |
-
~(mask_c0[..., None] * mask_c1[:, None]).bool(),
|
127 |
-
-INF)
|
128 |
-
|
129 |
-
# build uniform prior & use sinkhorn
|
130 |
-
log_assign_matrix = self.log_optimal_transport(
|
131 |
-
sim_matrix, self.bin_score, self.skh_iters)
|
132 |
-
assign_matrix = log_assign_matrix.exp()
|
133 |
-
conf_matrix = assign_matrix[:, :-1, :-1]
|
134 |
-
|
135 |
-
# filter prediction with dustbin score (only in evaluation mode)
|
136 |
-
if not self.training and self.skh_prefilter:
|
137 |
-
filter0 = (assign_matrix.max(dim=2)[1] == S)[:, :-1] # [N, L]
|
138 |
-
filter1 = (assign_matrix.max(dim=1)[1] == L)[:, :-1] # [N, S]
|
139 |
-
conf_matrix[filter0[..., None].repeat(1, 1, S)] = 0
|
140 |
-
conf_matrix[filter1[:, None].repeat(1, L, 1)] = 0
|
141 |
-
|
142 |
-
if self.config['sparse_spvs']:
|
143 |
-
data.update({'conf_matrix_with_bin': assign_matrix.clone()})
|
144 |
-
|
145 |
-
data.update({'conf_matrix': conf_matrix})
|
146 |
-
|
147 |
-
# predict coarse matches from conf_matrix
|
148 |
-
data.update(**self.get_coarse_match(conf_matrix, data))
|
149 |
-
|
150 |
-
@torch.no_grad()
|
151 |
-
def get_coarse_match(self, conf_matrix, data):
|
152 |
-
"""
|
153 |
-
Args:
|
154 |
-
conf_matrix (torch.Tensor): [N, L, S]
|
155 |
-
data (dict): with keys ['hw0_i', 'hw1_i', 'hw0_c', 'hw1_c']
|
156 |
-
Returns:
|
157 |
-
coarse_matches (dict): {
|
158 |
-
'b_ids' (torch.Tensor): [M'],
|
159 |
-
'i_ids' (torch.Tensor): [M'],
|
160 |
-
'j_ids' (torch.Tensor): [M'],
|
161 |
-
'gt_mask' (torch.Tensor): [M'],
|
162 |
-
'm_bids' (torch.Tensor): [M],
|
163 |
-
'mkpts0_c' (torch.Tensor): [M, 2],
|
164 |
-
'mkpts1_c' (torch.Tensor): [M, 2],
|
165 |
-
'mconf' (torch.Tensor): [M]}
|
166 |
-
"""
|
167 |
-
axes_lengths = {
|
168 |
-
'h0c': data['hw0_c'][0],
|
169 |
-
'w0c': data['hw0_c'][1],
|
170 |
-
'h1c': data['hw1_c'][0],
|
171 |
-
'w1c': data['hw1_c'][1]
|
172 |
-
}
|
173 |
-
_device = conf_matrix.device
|
174 |
-
# 1. confidence thresholding
|
175 |
-
mask = conf_matrix > self.thr
|
176 |
-
mask = rearrange(mask, 'b (h0c w0c) (h1c w1c) -> b h0c w0c h1c w1c',
|
177 |
-
**axes_lengths)
|
178 |
-
if 'mask0' not in data:
|
179 |
-
mask_border(mask, self.border_rm, False)
|
180 |
-
else:
|
181 |
-
mask_border_with_padding(mask, self.border_rm, False,
|
182 |
-
data['mask0'], data['mask1'])
|
183 |
-
mask = rearrange(mask, 'b h0c w0c h1c w1c -> b (h0c w0c) (h1c w1c)',
|
184 |
-
**axes_lengths)
|
185 |
-
|
186 |
-
# 2. mutual nearest
|
187 |
-
mask = mask \
|
188 |
-
* (conf_matrix == conf_matrix.max(dim=2, keepdim=True)[0]) \
|
189 |
-
* (conf_matrix == conf_matrix.max(dim=1, keepdim=True)[0])
|
190 |
-
|
191 |
-
# 3. find all valid coarse matches
|
192 |
-
# this only works when at most one `True` in each row
|
193 |
-
mask_v, all_j_ids = mask.max(dim=2)
|
194 |
-
b_ids, i_ids = torch.where(mask_v)
|
195 |
-
j_ids = all_j_ids[b_ids, i_ids]
|
196 |
-
mconf = conf_matrix[b_ids, i_ids, j_ids]
|
197 |
-
|
198 |
-
# 4. Random sampling of training samples for fine-level LoFTR
|
199 |
-
# (optional) pad samples with gt coarse-level matches
|
200 |
-
if self.training:
|
201 |
-
# NOTE:
|
202 |
-
# The sampling is performed across all pairs in a batch without manually balancing
|
203 |
-
# #samples for fine-level increases w.r.t. batch_size
|
204 |
-
if 'mask0' not in data:
|
205 |
-
num_candidates_max = mask.size(0) * max(
|
206 |
-
mask.size(1), mask.size(2))
|
207 |
-
else:
|
208 |
-
num_candidates_max = compute_max_candidates(
|
209 |
-
data['mask0'], data['mask1'])
|
210 |
-
num_matches_train = int(num_candidates_max *
|
211 |
-
self.train_coarse_percent)
|
212 |
-
num_matches_pred = len(b_ids)
|
213 |
-
assert self.train_pad_num_gt_min < num_matches_train, "min-num-gt-pad should be less than num-train-matches"
|
214 |
-
|
215 |
-
# pred_indices is to select from prediction
|
216 |
-
if num_matches_pred <= num_matches_train - self.train_pad_num_gt_min:
|
217 |
-
pred_indices = torch.arange(num_matches_pred, device=_device)
|
218 |
-
else:
|
219 |
-
pred_indices = torch.randint(
|
220 |
-
num_matches_pred,
|
221 |
-
(num_matches_train - self.train_pad_num_gt_min, ),
|
222 |
-
device=_device)
|
223 |
-
|
224 |
-
# gt_pad_indices is to select from gt padding. e.g. max(3787-4800, 200)
|
225 |
-
gt_pad_indices = torch.randint(
|
226 |
-
len(data['spv_b_ids']),
|
227 |
-
(max(num_matches_train - num_matches_pred,
|
228 |
-
self.train_pad_num_gt_min), ),
|
229 |
-
device=_device)
|
230 |
-
mconf_gt = torch.zeros(len(data['spv_b_ids']), device=_device) # set conf of gt paddings to all zero
|
231 |
-
|
232 |
-
b_ids, i_ids, j_ids, mconf = map(
|
233 |
-
lambda x, y: torch.cat([x[pred_indices], y[gt_pad_indices]],
|
234 |
-
dim=0),
|
235 |
-
*zip([b_ids, data['spv_b_ids']], [i_ids, data['spv_i_ids']],
|
236 |
-
[j_ids, data['spv_j_ids']], [mconf, mconf_gt]))
|
237 |
-
|
238 |
-
# These matches select patches that feed into fine-level network
|
239 |
-
coarse_matches = {'b_ids': b_ids, 'i_ids': i_ids, 'j_ids': j_ids}
|
240 |
-
|
241 |
-
# 4. Update with matches in original image resolution
|
242 |
-
scale = data['hw0_i'][0] / data['hw0_c'][0]
|
243 |
-
scale0 = scale * data['scale0'][b_ids] if 'scale0' in data else scale
|
244 |
-
scale1 = scale * data['scale1'][b_ids] if 'scale1' in data else scale
|
245 |
-
mkpts0_c = torch.stack(
|
246 |
-
[i_ids % data['hw0_c'][1], i_ids // data['hw0_c'][1]],
|
247 |
-
dim=1) * scale0
|
248 |
-
mkpts1_c = torch.stack(
|
249 |
-
[j_ids % data['hw1_c'][1], j_ids // data['hw1_c'][1]],
|
250 |
-
dim=1) * scale1
|
251 |
-
|
252 |
-
# These matches is the current prediction (for visualization)
|
253 |
-
coarse_matches.update({
|
254 |
-
'gt_mask': mconf == 0,
|
255 |
-
'm_bids': b_ids[mconf != 0], # mconf == 0 => gt matches
|
256 |
-
'mkpts0_c': mkpts0_c[mconf != 0],
|
257 |
-
'mkpts1_c': mkpts1_c[mconf != 0],
|
258 |
-
'mconf': mconf[mconf != 0]
|
259 |
-
})
|
260 |
-
|
261 |
-
return coarse_matches
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/cvpr_ds_config.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
from yacs.config import CfgNode as CN
|
2 |
-
|
3 |
-
|
4 |
-
def lower_config(yacs_cfg):
|
5 |
-
if not isinstance(yacs_cfg, CN):
|
6 |
-
return yacs_cfg
|
7 |
-
return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()}
|
8 |
-
|
9 |
-
|
10 |
-
_CN = CN()
|
11 |
-
_CN.BACKBONE_TYPE = 'ResNetFPN'
|
12 |
-
_CN.RESOLUTION = (8, 2) # options: [(8, 2), (16, 4)]
|
13 |
-
_CN.FINE_WINDOW_SIZE = 5 # window_size in fine_level, must be odd
|
14 |
-
_CN.FINE_CONCAT_COARSE_FEAT = True
|
15 |
-
|
16 |
-
# 1. LoFTR-backbone (local feature CNN) config
|
17 |
-
_CN.RESNETFPN = CN()
|
18 |
-
_CN.RESNETFPN.INITIAL_DIM = 128
|
19 |
-
_CN.RESNETFPN.BLOCK_DIMS = [128, 196, 256] # s1, s2, s3
|
20 |
-
|
21 |
-
# 2. LoFTR-coarse module config
|
22 |
-
_CN.COARSE = CN()
|
23 |
-
_CN.COARSE.D_MODEL = 256
|
24 |
-
_CN.COARSE.D_FFN = 256
|
25 |
-
_CN.COARSE.NHEAD = 8
|
26 |
-
_CN.COARSE.LAYER_NAMES = ['self', 'cross'] * 4
|
27 |
-
_CN.COARSE.ATTENTION = 'linear' # options: ['linear', 'full']
|
28 |
-
_CN.COARSE.TEMP_BUG_FIX = False
|
29 |
-
|
30 |
-
# 3. Coarse-Matching config
|
31 |
-
_CN.MATCH_COARSE = CN()
|
32 |
-
_CN.MATCH_COARSE.THR = 0.2
|
33 |
-
_CN.MATCH_COARSE.BORDER_RM = 2
|
34 |
-
_CN.MATCH_COARSE.MATCH_TYPE = 'dual_softmax' # options: ['dual_softmax, 'sinkhorn']
|
35 |
-
_CN.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1
|
36 |
-
_CN.MATCH_COARSE.SKH_ITERS = 3
|
37 |
-
_CN.MATCH_COARSE.SKH_INIT_BIN_SCORE = 1.0
|
38 |
-
_CN.MATCH_COARSE.SKH_PREFILTER = True
|
39 |
-
_CN.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.4 # training tricks: save GPU memory
|
40 |
-
_CN.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock
|
41 |
-
|
42 |
-
# 4. LoFTR-fine module config
|
43 |
-
_CN.FINE = CN()
|
44 |
-
_CN.FINE.D_MODEL = 128
|
45 |
-
_CN.FINE.D_FFN = 128
|
46 |
-
_CN.FINE.NHEAD = 8
|
47 |
-
_CN.FINE.LAYER_NAMES = ['self', 'cross'] * 1
|
48 |
-
_CN.FINE.ATTENTION = 'linear'
|
49 |
-
|
50 |
-
default_cfg = lower_config(_CN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/fine_matching.py
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
|
5 |
-
from kornia.geometry.subpix import dsnt
|
6 |
-
from kornia.utils.grid import create_meshgrid
|
7 |
-
|
8 |
-
|
9 |
-
class FineMatching(nn.Module):
|
10 |
-
"""FineMatching with s2d paradigm"""
|
11 |
-
|
12 |
-
def __init__(self):
|
13 |
-
super().__init__()
|
14 |
-
|
15 |
-
def forward(self, feat_f0, feat_f1, data):
|
16 |
-
"""
|
17 |
-
Args:
|
18 |
-
feat0 (torch.Tensor): [M, WW, C]
|
19 |
-
feat1 (torch.Tensor): [M, WW, C]
|
20 |
-
data (dict)
|
21 |
-
Update:
|
22 |
-
data (dict):{
|
23 |
-
'expec_f' (torch.Tensor): [M, 3],
|
24 |
-
'mkpts0_f' (torch.Tensor): [M, 2],
|
25 |
-
'mkpts1_f' (torch.Tensor): [M, 2]}
|
26 |
-
"""
|
27 |
-
M, WW, C = feat_f0.shape
|
28 |
-
W = int(math.sqrt(WW))
|
29 |
-
scale = data['hw0_i'][0] / data['hw0_f'][0]
|
30 |
-
self.M, self.W, self.WW, self.C, self.scale = M, W, WW, C, scale
|
31 |
-
|
32 |
-
# corner case: if no coarse matches found
|
33 |
-
if M == 0:
|
34 |
-
assert self.training == False, "M is always >0, when training, see coarse_matching.py"
|
35 |
-
# logger.warning('No matches found in coarse-level.')
|
36 |
-
data.update({
|
37 |
-
'expec_f': torch.empty(0, 3, device=feat_f0.device),
|
38 |
-
'mkpts0_f': data['mkpts0_c'],
|
39 |
-
'mkpts1_f': data['mkpts1_c'],
|
40 |
-
})
|
41 |
-
return
|
42 |
-
|
43 |
-
feat_f0_picked = feat_f0_picked = feat_f0[:, WW//2, :]
|
44 |
-
sim_matrix = torch.einsum('mc,mrc->mr', feat_f0_picked, feat_f1)
|
45 |
-
softmax_temp = 1. / C**.5
|
46 |
-
heatmap = torch.softmax(softmax_temp * sim_matrix, dim=1).view(-1, W, W)
|
47 |
-
|
48 |
-
# compute coordinates from heatmap
|
49 |
-
coords_normalized = dsnt.spatial_expectation2d(heatmap[None], True)[0] # [M, 2]
|
50 |
-
grid_normalized = create_meshgrid(W, W, True, heatmap.device).reshape(1, -1, 2) # [1, WW, 2]
|
51 |
-
|
52 |
-
# compute std over <x, y>
|
53 |
-
var = torch.sum(grid_normalized**2 * heatmap.view(-1, WW, 1), dim=1) - coords_normalized**2 # [M, 2]
|
54 |
-
std = torch.sum(torch.sqrt(torch.clamp(var, min=1e-10)), -1) # [M] clamp needed for numerical stability
|
55 |
-
|
56 |
-
# for fine-level supervision
|
57 |
-
data.update({'expec_f': torch.cat([coords_normalized, std.unsqueeze(1)], -1)})
|
58 |
-
|
59 |
-
# compute absolute kpt coords
|
60 |
-
self.get_fine_match(coords_normalized, data)
|
61 |
-
|
62 |
-
@torch.no_grad()
|
63 |
-
def get_fine_match(self, coords_normed, data):
|
64 |
-
W, WW, C, scale = self.W, self.WW, self.C, self.scale
|
65 |
-
|
66 |
-
# mkpts0_f and mkpts1_f
|
67 |
-
mkpts0_f = data['mkpts0_c']
|
68 |
-
scale1 = scale * data['scale1'][data['b_ids']] if 'scale0' in data else scale
|
69 |
-
mkpts1_f = data['mkpts1_c'] + (coords_normed * (W // 2) * scale1)[:len(data['mconf'])]
|
70 |
-
|
71 |
-
data.update({
|
72 |
-
"mkpts0_f": mkpts0_f,
|
73 |
-
"mkpts1_f": mkpts1_f
|
74 |
-
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/geometry.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
@torch.no_grad()
|
5 |
-
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1):
|
6 |
-
""" Warp kpts0 from I0 to I1 with depth, K and Rt
|
7 |
-
Also check covisibility and depth consistency.
|
8 |
-
Depth is consistent if relative error < 0.2 (hard-coded).
|
9 |
-
|
10 |
-
Args:
|
11 |
-
kpts0 (torch.Tensor): [N, L, 2] - <x, y>,
|
12 |
-
depth0 (torch.Tensor): [N, H, W],
|
13 |
-
depth1 (torch.Tensor): [N, H, W],
|
14 |
-
T_0to1 (torch.Tensor): [N, 3, 4],
|
15 |
-
K0 (torch.Tensor): [N, 3, 3],
|
16 |
-
K1 (torch.Tensor): [N, 3, 3],
|
17 |
-
Returns:
|
18 |
-
calculable_mask (torch.Tensor): [N, L]
|
19 |
-
warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
|
20 |
-
"""
|
21 |
-
kpts0_long = kpts0.round().long()
|
22 |
-
|
23 |
-
# Sample depth, get calculable_mask on depth != 0
|
24 |
-
kpts0_depth = torch.stack(
|
25 |
-
[depth0[i, kpts0_long[i, :, 1], kpts0_long[i, :, 0]] for i in range(kpts0.shape[0])], dim=0
|
26 |
-
) # (N, L)
|
27 |
-
nonzero_mask = kpts0_depth != 0
|
28 |
-
|
29 |
-
# Unproject
|
30 |
-
kpts0_h = torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] # (N, L, 3)
|
31 |
-
kpts0_cam = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L)
|
32 |
-
|
33 |
-
# Rigid Transform
|
34 |
-
w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L)
|
35 |
-
w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]
|
36 |
-
|
37 |
-
# Project
|
38 |
-
w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3)
|
39 |
-
w_kpts0 = w_kpts0_h[:, :, :2] / (w_kpts0_h[:, :, [2]] + 1e-4) # (N, L, 2), +1e-4 to avoid zero depth
|
40 |
-
|
41 |
-
# Covisible Check
|
42 |
-
h, w = depth1.shape[1:3]
|
43 |
-
covisible_mask = (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w-1) * \
|
44 |
-
(w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h-1)
|
45 |
-
w_kpts0_long = w_kpts0.long()
|
46 |
-
w_kpts0_long[~covisible_mask, :] = 0
|
47 |
-
|
48 |
-
w_kpts0_depth = torch.stack(
|
49 |
-
[depth1[i, w_kpts0_long[i, :, 1], w_kpts0_long[i, :, 0]] for i in range(w_kpts0_long.shape[0])], dim=0
|
50 |
-
) # (N, L)
|
51 |
-
consistent_mask = ((w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth).abs() < 0.2
|
52 |
-
valid_mask = nonzero_mask * covisible_mask * consistent_mask
|
53 |
-
|
54 |
-
return valid_mask, w_kpts0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/position_encoding.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
|
5 |
-
|
6 |
-
class PositionEncodingSine(nn.Module):
|
7 |
-
"""
|
8 |
-
This is a sinusoidal position encoding that generalized to 2-dimensional images
|
9 |
-
"""
|
10 |
-
|
11 |
-
def __init__(self, d_model, max_shape=(256, 256), temp_bug_fix=True):
|
12 |
-
"""
|
13 |
-
Args:
|
14 |
-
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
|
15 |
-
temp_bug_fix (bool): As noted in this [issue](https://github.com/zju3dv/LoFTR/issues/41),
|
16 |
-
the original implementation of LoFTR includes a bug in the pos-enc impl, which has little impact
|
17 |
-
on the final performance. For now, we keep both impls for backward compatability.
|
18 |
-
We will remove the buggy impl after re-training all variants of our released models.
|
19 |
-
"""
|
20 |
-
super().__init__()
|
21 |
-
|
22 |
-
pe = torch.zeros((d_model, *max_shape))
|
23 |
-
y_position = torch.ones(max_shape).cumsum(0).float().unsqueeze(0)
|
24 |
-
x_position = torch.ones(max_shape).cumsum(1).float().unsqueeze(0)
|
25 |
-
if temp_bug_fix:
|
26 |
-
div_term = torch.exp(torch.arange(0, d_model//2, 2).float() * (-math.log(10000.0) / (d_model//2)))
|
27 |
-
else: # a buggy implementation (for backward compatability only)
|
28 |
-
div_term = torch.exp(torch.arange(0, d_model//2, 2).float() * (-math.log(10000.0) / d_model//2))
|
29 |
-
div_term = div_term[:, None, None] # [C//4, 1, 1]
|
30 |
-
pe[0::4, :, :] = torch.sin(x_position * div_term)
|
31 |
-
pe[1::4, :, :] = torch.cos(x_position * div_term)
|
32 |
-
pe[2::4, :, :] = torch.sin(y_position * div_term)
|
33 |
-
pe[3::4, :, :] = torch.cos(y_position * div_term)
|
34 |
-
|
35 |
-
self.register_buffer('pe', pe.unsqueeze(0), persistent=False) # [1, C, H, W]
|
36 |
-
|
37 |
-
def forward(self, x):
|
38 |
-
"""
|
39 |
-
Args:
|
40 |
-
x: [N, C, H, W]
|
41 |
-
"""
|
42 |
-
return x + self.pe[:, :, :x.size(2), :x.size(3)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/loftr/utils/supervision.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
from math import log
|
2 |
-
from loguru import logger
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from einops import repeat
|
6 |
-
from kornia.utils import create_meshgrid
|
7 |
-
|
8 |
-
from .geometry import warp_kpts
|
9 |
-
|
10 |
-
############## ↓ Coarse-Level supervision ↓ ##############
|
11 |
-
|
12 |
-
|
13 |
-
@torch.no_grad()
|
14 |
-
def mask_pts_at_padded_regions(grid_pt, mask):
|
15 |
-
"""For megadepth dataset, zero-padding exists in images"""
|
16 |
-
mask = repeat(mask, 'n h w -> n (h w) c', c=2)
|
17 |
-
grid_pt[~mask.bool()] = 0
|
18 |
-
return grid_pt
|
19 |
-
|
20 |
-
|
21 |
-
@torch.no_grad()
|
22 |
-
def spvs_coarse(data, config):
|
23 |
-
"""
|
24 |
-
Update:
|
25 |
-
data (dict): {
|
26 |
-
"conf_matrix_gt": [N, hw0, hw1],
|
27 |
-
'spv_b_ids': [M]
|
28 |
-
'spv_i_ids': [M]
|
29 |
-
'spv_j_ids': [M]
|
30 |
-
'spv_w_pt0_i': [N, hw0, 2], in original image resolution
|
31 |
-
'spv_pt1_i': [N, hw1, 2], in original image resolution
|
32 |
-
}
|
33 |
-
|
34 |
-
NOTE:
|
35 |
-
- for scannet dataset, there're 3 kinds of resolution {i, c, f}
|
36 |
-
- for megadepth dataset, there're 4 kinds of resolution {i, i_resize, c, f}
|
37 |
-
"""
|
38 |
-
# 1. misc
|
39 |
-
device = data['image0'].device
|
40 |
-
N, _, H0, W0 = data['image0'].shape
|
41 |
-
_, _, H1, W1 = data['image1'].shape
|
42 |
-
scale = config['LOFTR']['RESOLUTION'][0]
|
43 |
-
scale0 = scale * data['scale0'][:, None] if 'scale0' in data else scale
|
44 |
-
scale1 = scale * data['scale1'][:, None] if 'scale0' in data else scale
|
45 |
-
h0, w0, h1, w1 = map(lambda x: x // scale, [H0, W0, H1, W1])
|
46 |
-
|
47 |
-
# 2. warp grids
|
48 |
-
# create kpts in meshgrid and resize them to image resolution
|
49 |
-
grid_pt0_c = create_meshgrid(h0, w0, False, device).reshape(1, h0*w0, 2).repeat(N, 1, 1) # [N, hw, 2]
|
50 |
-
grid_pt0_i = scale0 * grid_pt0_c
|
51 |
-
grid_pt1_c = create_meshgrid(h1, w1, False, device).reshape(1, h1*w1, 2).repeat(N, 1, 1)
|
52 |
-
grid_pt1_i = scale1 * grid_pt1_c
|
53 |
-
|
54 |
-
# mask padded region to (0, 0), so no need to manually mask conf_matrix_gt
|
55 |
-
if 'mask0' in data:
|
56 |
-
grid_pt0_i = mask_pts_at_padded_regions(grid_pt0_i, data['mask0'])
|
57 |
-
grid_pt1_i = mask_pts_at_padded_regions(grid_pt1_i, data['mask1'])
|
58 |
-
|
59 |
-
# warp kpts bi-directionally and resize them to coarse-level resolution
|
60 |
-
# (no depth consistency check, since it leads to worse results experimentally)
|
61 |
-
# (unhandled edge case: points with 0-depth will be warped to the left-up corner)
|
62 |
-
_, w_pt0_i = warp_kpts(grid_pt0_i, data['depth0'], data['depth1'], data['T_0to1'], data['K0'], data['K1'])
|
63 |
-
_, w_pt1_i = warp_kpts(grid_pt1_i, data['depth1'], data['depth0'], data['T_1to0'], data['K1'], data['K0'])
|
64 |
-
w_pt0_c = w_pt0_i / scale1
|
65 |
-
w_pt1_c = w_pt1_i / scale0
|
66 |
-
|
67 |
-
# 3. check if mutual nearest neighbor
|
68 |
-
w_pt0_c_round = w_pt0_c[:, :, :].round().long()
|
69 |
-
nearest_index1 = w_pt0_c_round[..., 0] + w_pt0_c_round[..., 1] * w1
|
70 |
-
w_pt1_c_round = w_pt1_c[:, :, :].round().long()
|
71 |
-
nearest_index0 = w_pt1_c_round[..., 0] + w_pt1_c_round[..., 1] * w0
|
72 |
-
|
73 |
-
# corner case: out of boundary
|
74 |
-
def out_bound_mask(pt, w, h):
|
75 |
-
return (pt[..., 0] < 0) + (pt[..., 0] >= w) + (pt[..., 1] < 0) + (pt[..., 1] >= h)
|
76 |
-
nearest_index1[out_bound_mask(w_pt0_c_round, w1, h1)] = 0
|
77 |
-
nearest_index0[out_bound_mask(w_pt1_c_round, w0, h0)] = 0
|
78 |
-
|
79 |
-
loop_back = torch.stack([nearest_index0[_b][_i] for _b, _i in enumerate(nearest_index1)], dim=0)
|
80 |
-
correct_0to1 = loop_back == torch.arange(h0*w0, device=device)[None].repeat(N, 1)
|
81 |
-
correct_0to1[:, 0] = False # ignore the top-left corner
|
82 |
-
|
83 |
-
# 4. construct a gt conf_matrix
|
84 |
-
conf_matrix_gt = torch.zeros(N, h0*w0, h1*w1, device=device)
|
85 |
-
b_ids, i_ids = torch.where(correct_0to1 != 0)
|
86 |
-
j_ids = nearest_index1[b_ids, i_ids]
|
87 |
-
|
88 |
-
conf_matrix_gt[b_ids, i_ids, j_ids] = 1
|
89 |
-
data.update({'conf_matrix_gt': conf_matrix_gt})
|
90 |
-
|
91 |
-
# 5. save coarse matches(gt) for training fine level
|
92 |
-
if len(b_ids) == 0:
|
93 |
-
logger.warning(f"No groundtruth coarse match found for: {data['pair_names']}")
|
94 |
-
# this won't affect fine-level loss calculation
|
95 |
-
b_ids = torch.tensor([0], device=device)
|
96 |
-
i_ids = torch.tensor([0], device=device)
|
97 |
-
j_ids = torch.tensor([0], device=device)
|
98 |
-
|
99 |
-
data.update({
|
100 |
-
'spv_b_ids': b_ids,
|
101 |
-
'spv_i_ids': i_ids,
|
102 |
-
'spv_j_ids': j_ids
|
103 |
-
})
|
104 |
-
|
105 |
-
# 6. save intermediate results (for fast fine-level computation)
|
106 |
-
data.update({
|
107 |
-
'spv_w_pt0_i': w_pt0_i,
|
108 |
-
'spv_pt1_i': grid_pt1_i
|
109 |
-
})
|
110 |
-
|
111 |
-
|
112 |
-
def compute_supervision_coarse(data, config):
|
113 |
-
assert len(set(data['dataset_name'])) == 1, "Do not support mixed datasets training!"
|
114 |
-
data_source = data['dataset_name'][0]
|
115 |
-
if data_source.lower() in ['scannet', 'megadepth']:
|
116 |
-
spvs_coarse(data, config)
|
117 |
-
else:
|
118 |
-
raise ValueError(f'Unknown data source: {data_source}')
|
119 |
-
|
120 |
-
|
121 |
-
############## ↓ Fine-Level supervision ↓ ##############
|
122 |
-
|
123 |
-
@torch.no_grad()
|
124 |
-
def spvs_fine(data, config):
|
125 |
-
"""
|
126 |
-
Update:
|
127 |
-
data (dict):{
|
128 |
-
"expec_f_gt": [M, 2]}
|
129 |
-
"""
|
130 |
-
# 1. misc
|
131 |
-
# w_pt0_i, pt1_i = data.pop('spv_w_pt0_i'), data.pop('spv_pt1_i')
|
132 |
-
w_pt0_i, pt1_i = data['spv_w_pt0_i'], data['spv_pt1_i']
|
133 |
-
scale = config['LOFTR']['RESOLUTION'][1]
|
134 |
-
radius = config['LOFTR']['FINE_WINDOW_SIZE'] // 2
|
135 |
-
|
136 |
-
# 2. get coarse prediction
|
137 |
-
b_ids, i_ids, j_ids = data['b_ids'], data['i_ids'], data['j_ids']
|
138 |
-
|
139 |
-
# 3. compute gt
|
140 |
-
scale = scale * data['scale1'][b_ids] if 'scale0' in data else scale
|
141 |
-
# `expec_f_gt` might exceed the window, i.e. abs(*) > 1, which would be filtered later
|
142 |
-
expec_f_gt = (w_pt0_i[b_ids, i_ids] - pt1_i[b_ids, j_ids]) / scale / radius # [M, 2]
|
143 |
-
data.update({"expec_f_gt": expec_f_gt})
|
144 |
-
|
145 |
-
|
146 |
-
def compute_supervision_fine(data, config):
|
147 |
-
data_source = data['dataset_name'][0]
|
148 |
-
if data_source.lower() in ['scannet', 'megadepth']:
|
149 |
-
spvs_fine(data, config)
|
150 |
-
else:
|
151 |
-
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/pyproject.toml
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
[project]
|
2 |
-
name = "elevation_estimate"
|
3 |
-
version = "0.1"
|
4 |
-
|
5 |
-
[tool.setuptools.packages.find]
|
6 |
-
exclude = ["configs", "tests"] # empty by default
|
7 |
-
namespaces = false # true by default
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/utils/__init__.py
DELETED
File without changes
|
One-2-3-45-master 2/elevation_estimate/utils/elev_est_api.py
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import os.path as osp
|
5 |
-
import imageio
|
6 |
-
from copy import deepcopy
|
7 |
-
|
8 |
-
import loguru
|
9 |
-
import torch
|
10 |
-
import matplotlib.cm as cm
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
|
13 |
-
from ..loftr import LoFTR, default_cfg
|
14 |
-
from . import plt_utils
|
15 |
-
from .plotting import make_matching_figure
|
16 |
-
from .utils3d import rect_to_img, canonical_to_camera, calc_pose
|
17 |
-
|
18 |
-
|
19 |
-
class ElevEstHelper:
|
20 |
-
_feature_matcher = None
|
21 |
-
|
22 |
-
@classmethod
|
23 |
-
def get_feature_matcher(cls):
|
24 |
-
if cls._feature_matcher is None:
|
25 |
-
loguru.logger.info("Loading feature matcher...")
|
26 |
-
_default_cfg = deepcopy(default_cfg)
|
27 |
-
_default_cfg['coarse']['temp_bug_fix'] = True # set to False when using the old ckpt
|
28 |
-
matcher = LoFTR(config=_default_cfg)
|
29 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
30 |
-
ckpt_path = os.path.join(current_dir, "weights/indoor_ds_new.ckpt")
|
31 |
-
if not osp.exists(ckpt_path):
|
32 |
-
loguru.logger.info("Downloading feature matcher...")
|
33 |
-
os.makedirs("weights", exist_ok=True)
|
34 |
-
import gdown
|
35 |
-
gdown.cached_download(url="https://drive.google.com/uc?id=19s3QvcCWQ6g-N1PrYlDCg-2mOJZ3kkgS",
|
36 |
-
path=ckpt_path)
|
37 |
-
matcher.load_state_dict(torch.load(ckpt_path)['state_dict'])
|
38 |
-
matcher = matcher.eval().cuda()
|
39 |
-
cls._feature_matcher = matcher
|
40 |
-
return cls._feature_matcher
|
41 |
-
|
42 |
-
|
43 |
-
def mask_out_bkgd(img_path, dbg=False):
|
44 |
-
img = imageio.imread_v2(img_path)
|
45 |
-
if img.shape[-1] == 4:
|
46 |
-
fg_mask = img[:, :, :3]
|
47 |
-
else:
|
48 |
-
loguru.logger.info("Image has no alpha channel, using thresholding to mask out background")
|
49 |
-
fg_mask = ~(img > 245).all(axis=-1)
|
50 |
-
if dbg:
|
51 |
-
plt.imshow(plt_utils.vis_mask(img, fg_mask.astype(np.uint8), color=[0, 255, 0]))
|
52 |
-
plt.show()
|
53 |
-
return fg_mask
|
54 |
-
|
55 |
-
|
56 |
-
def get_feature_matching(img_paths, dbg=False):
|
57 |
-
assert len(img_paths) == 4
|
58 |
-
matcher = ElevEstHelper.get_feature_matcher()
|
59 |
-
feature_matching = {}
|
60 |
-
masks = []
|
61 |
-
for i in range(4):
|
62 |
-
mask = mask_out_bkgd(img_paths[i], dbg=dbg)
|
63 |
-
masks.append(mask)
|
64 |
-
for i in range(0, 4):
|
65 |
-
for j in range(i + 1, 4):
|
66 |
-
img0_pth = img_paths[i]
|
67 |
-
img1_pth = img_paths[j]
|
68 |
-
mask0 = masks[i]
|
69 |
-
mask1 = masks[j]
|
70 |
-
img0_raw = cv2.imread(img0_pth, cv2.IMREAD_GRAYSCALE)
|
71 |
-
img1_raw = cv2.imread(img1_pth, cv2.IMREAD_GRAYSCALE)
|
72 |
-
original_shape = img0_raw.shape
|
73 |
-
img0_raw_resized = cv2.resize(img0_raw, (480, 480))
|
74 |
-
img1_raw_resized = cv2.resize(img1_raw, (480, 480))
|
75 |
-
|
76 |
-
img0 = torch.from_numpy(img0_raw_resized)[None][None].cuda() / 255.
|
77 |
-
img1 = torch.from_numpy(img1_raw_resized)[None][None].cuda() / 255.
|
78 |
-
batch = {'image0': img0, 'image1': img1}
|
79 |
-
|
80 |
-
# Inference with LoFTR and get prediction
|
81 |
-
with torch.no_grad():
|
82 |
-
matcher(batch)
|
83 |
-
mkpts0 = batch['mkpts0_f'].cpu().numpy()
|
84 |
-
mkpts1 = batch['mkpts1_f'].cpu().numpy()
|
85 |
-
mconf = batch['mconf'].cpu().numpy()
|
86 |
-
mkpts0[:, 0] = mkpts0[:, 0] * original_shape[1] / 480
|
87 |
-
mkpts0[:, 1] = mkpts0[:, 1] * original_shape[0] / 480
|
88 |
-
mkpts1[:, 0] = mkpts1[:, 0] * original_shape[1] / 480
|
89 |
-
mkpts1[:, 1] = mkpts1[:, 1] * original_shape[0] / 480
|
90 |
-
keep0 = mask0[mkpts0[:, 1].astype(int), mkpts1[:, 0].astype(int)]
|
91 |
-
keep1 = mask1[mkpts1[:, 1].astype(int), mkpts1[:, 0].astype(int)]
|
92 |
-
keep = np.logical_and(keep0, keep1)
|
93 |
-
mkpts0 = mkpts0[keep]
|
94 |
-
mkpts1 = mkpts1[keep]
|
95 |
-
mconf = mconf[keep]
|
96 |
-
if dbg:
|
97 |
-
# Draw visualization
|
98 |
-
color = cm.jet(mconf)
|
99 |
-
text = [
|
100 |
-
'LoFTR',
|
101 |
-
'Matches: {}'.format(len(mkpts0)),
|
102 |
-
]
|
103 |
-
fig = make_matching_figure(img0_raw, img1_raw, mkpts0, mkpts1, color, text=text)
|
104 |
-
fig.show()
|
105 |
-
feature_matching[f"{i}_{j}"] = np.concatenate([mkpts0, mkpts1, mconf[:, None]], axis=1)
|
106 |
-
|
107 |
-
return feature_matching
|
108 |
-
|
109 |
-
|
110 |
-
def gen_pose_hypothesis(center_elevation):
|
111 |
-
elevations = np.radians(
|
112 |
-
[center_elevation, center_elevation - 10, center_elevation + 10, center_elevation, center_elevation]) # 45~120
|
113 |
-
azimuths = np.radians([30, 30, 30, 20, 40])
|
114 |
-
input_poses = calc_pose(elevations, azimuths, len(azimuths))
|
115 |
-
input_poses = input_poses[1:]
|
116 |
-
input_poses[..., 1] *= -1
|
117 |
-
input_poses[..., 2] *= -1
|
118 |
-
return input_poses
|
119 |
-
|
120 |
-
|
121 |
-
def ba_error_general(K, matches, poses):
|
122 |
-
projmat0 = K @ poses[0].inverse()[:3, :4]
|
123 |
-
projmat1 = K @ poses[1].inverse()[:3, :4]
|
124 |
-
match_01 = matches[0]
|
125 |
-
pts0 = match_01[:, :2]
|
126 |
-
pts1 = match_01[:, 2:4]
|
127 |
-
Xref = cv2.triangulatePoints(projmat0.cpu().numpy(), projmat1.cpu().numpy(),
|
128 |
-
pts0.cpu().numpy().T, pts1.cpu().numpy().T)
|
129 |
-
Xref = Xref[:3] / Xref[3:]
|
130 |
-
Xref = Xref.T
|
131 |
-
Xref = torch.from_numpy(Xref).cuda().float()
|
132 |
-
reproj_error = 0
|
133 |
-
for match, cp in zip(matches[1:], poses[2:]):
|
134 |
-
dist = (torch.norm(match_01[:, :2][:, None, :] - match[:, :2][None, :, :], dim=-1))
|
135 |
-
if dist.numel() > 0:
|
136 |
-
# print("dist.shape", dist.shape)
|
137 |
-
m0to2_index = dist.argmin(1)
|
138 |
-
keep = dist[torch.arange(match_01.shape[0]), m0to2_index] < 1
|
139 |
-
if keep.sum() > 0:
|
140 |
-
xref_in2 = rect_to_img(K, canonical_to_camera(Xref, cp.inverse()))
|
141 |
-
reproj_error2 = torch.norm(match[m0to2_index][keep][:, 2:4] - xref_in2[keep], dim=-1)
|
142 |
-
conf02 = match[m0to2_index][keep][:, -1]
|
143 |
-
reproj_error += (reproj_error2 * conf02).sum() / (conf02.sum())
|
144 |
-
|
145 |
-
return reproj_error
|
146 |
-
|
147 |
-
|
148 |
-
def find_optim_elev(elevs, nimgs, matches, K, dbg=False):
|
149 |
-
errs = []
|
150 |
-
for elev in elevs:
|
151 |
-
err = 0
|
152 |
-
cam_poses = gen_pose_hypothesis(elev)
|
153 |
-
for start in range(nimgs - 1):
|
154 |
-
batch_matches, batch_poses = [], []
|
155 |
-
for i in range(start, nimgs + start):
|
156 |
-
ci = i % nimgs
|
157 |
-
batch_poses.append(cam_poses[ci])
|
158 |
-
for j in range(nimgs - 1):
|
159 |
-
key = f"{start}_{(start + j + 1) % nimgs}"
|
160 |
-
match = matches[key]
|
161 |
-
batch_matches.append(match)
|
162 |
-
err += ba_error_general(K, batch_matches, batch_poses)
|
163 |
-
errs.append(err)
|
164 |
-
errs = torch.tensor(errs)
|
165 |
-
if dbg:
|
166 |
-
plt.plot(elevs, errs)
|
167 |
-
plt.show()
|
168 |
-
optim_elev = elevs[torch.argmin(errs)].item()
|
169 |
-
return optim_elev
|
170 |
-
|
171 |
-
|
172 |
-
def get_elev_est(feature_matching, min_elev=30, max_elev=150, K=None, dbg=False):
|
173 |
-
flag = True
|
174 |
-
matches = {}
|
175 |
-
for i in range(4):
|
176 |
-
for j in range(i + 1, 4):
|
177 |
-
match_ij = feature_matching[f"{i}_{j}"]
|
178 |
-
if len(match_ij) == 0:
|
179 |
-
flag = False
|
180 |
-
match_ji = np.concatenate([match_ij[:, 2:4], match_ij[:, 0:2], match_ij[:, 4:5]], axis=1)
|
181 |
-
matches[f"{i}_{j}"] = torch.from_numpy(match_ij).float().cuda()
|
182 |
-
matches[f"{j}_{i}"] = torch.from_numpy(match_ji).float().cuda()
|
183 |
-
if not flag:
|
184 |
-
loguru.logger.info("0 matches, could not estimate elevation")
|
185 |
-
return None
|
186 |
-
interval = 10
|
187 |
-
elevs = np.arange(min_elev, max_elev, interval)
|
188 |
-
optim_elev1 = find_optim_elev(elevs, 4, matches, K)
|
189 |
-
|
190 |
-
elevs = np.arange(optim_elev1 - 10, optim_elev1 + 10, 1)
|
191 |
-
optim_elev2 = find_optim_elev(elevs, 4, matches, K)
|
192 |
-
|
193 |
-
return optim_elev2
|
194 |
-
|
195 |
-
|
196 |
-
def elev_est_api(img_paths, min_elev=30, max_elev=150, K=None, dbg=False):
|
197 |
-
feature_matching = get_feature_matching(img_paths, dbg=dbg)
|
198 |
-
if K is None:
|
199 |
-
loguru.logger.warning("K is not provided, using default K")
|
200 |
-
K = np.array([[280.0, 0, 128.0],
|
201 |
-
[0, 280.0, 128.0],
|
202 |
-
[0, 0, 1]])
|
203 |
-
K = torch.from_numpy(K).cuda().float()
|
204 |
-
elev = get_elev_est(feature_matching, min_elev, max_elev, K, dbg=dbg)
|
205 |
-
return elev
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/utils/plotting.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import bisect
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import matplotlib
|
5 |
-
|
6 |
-
|
7 |
-
def _compute_conf_thresh(data):
|
8 |
-
dataset_name = data['dataset_name'][0].lower()
|
9 |
-
if dataset_name == 'scannet':
|
10 |
-
thr = 5e-4
|
11 |
-
elif dataset_name == 'megadepth':
|
12 |
-
thr = 1e-4
|
13 |
-
else:
|
14 |
-
raise ValueError(f'Unknown dataset: {dataset_name}')
|
15 |
-
return thr
|
16 |
-
|
17 |
-
|
18 |
-
# --- VISUALIZATION --- #
|
19 |
-
|
20 |
-
def make_matching_figure(
|
21 |
-
img0, img1, mkpts0, mkpts1, color,
|
22 |
-
kpts0=None, kpts1=None, text=[], dpi=75, path=None):
|
23 |
-
# draw image pair
|
24 |
-
assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
|
25 |
-
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
|
26 |
-
axes[0].imshow(img0, cmap='gray')
|
27 |
-
axes[1].imshow(img1, cmap='gray')
|
28 |
-
for i in range(2): # clear all frames
|
29 |
-
axes[i].get_yaxis().set_ticks([])
|
30 |
-
axes[i].get_xaxis().set_ticks([])
|
31 |
-
for spine in axes[i].spines.values():
|
32 |
-
spine.set_visible(False)
|
33 |
-
plt.tight_layout(pad=1)
|
34 |
-
|
35 |
-
if kpts0 is not None:
|
36 |
-
assert kpts1 is not None
|
37 |
-
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2)
|
38 |
-
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2)
|
39 |
-
|
40 |
-
# draw matches
|
41 |
-
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
|
42 |
-
fig.canvas.draw()
|
43 |
-
transFigure = fig.transFigure.inverted()
|
44 |
-
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
|
45 |
-
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
|
46 |
-
fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
|
47 |
-
(fkpts0[i, 1], fkpts1[i, 1]),
|
48 |
-
transform=fig.transFigure, c=color[i], linewidth=1)
|
49 |
-
for i in range(len(mkpts0))]
|
50 |
-
|
51 |
-
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4)
|
52 |
-
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4)
|
53 |
-
|
54 |
-
# put txts
|
55 |
-
txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
|
56 |
-
fig.text(
|
57 |
-
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
|
58 |
-
fontsize=15, va='top', ha='left', color=txt_color)
|
59 |
-
|
60 |
-
# save or return figure
|
61 |
-
if path:
|
62 |
-
plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
|
63 |
-
plt.close()
|
64 |
-
else:
|
65 |
-
return fig
|
66 |
-
|
67 |
-
|
68 |
-
def _make_evaluation_figure(data, b_id, alpha='dynamic'):
|
69 |
-
b_mask = data['m_bids'] == b_id
|
70 |
-
conf_thr = _compute_conf_thresh(data)
|
71 |
-
|
72 |
-
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
73 |
-
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
74 |
-
kpts0 = data['mkpts0_f'][b_mask].cpu().numpy()
|
75 |
-
kpts1 = data['mkpts1_f'][b_mask].cpu().numpy()
|
76 |
-
|
77 |
-
# for megadepth, we visualize matches on the resized image
|
78 |
-
if 'scale0' in data:
|
79 |
-
kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]]
|
80 |
-
kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]]
|
81 |
-
|
82 |
-
epi_errs = data['epi_errs'][b_mask].cpu().numpy()
|
83 |
-
correct_mask = epi_errs < conf_thr
|
84 |
-
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
|
85 |
-
n_correct = np.sum(correct_mask)
|
86 |
-
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu())
|
87 |
-
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
|
88 |
-
# recall might be larger than 1, since the calculation of conf_matrix_gt
|
89 |
-
# uses groundtruth depths and camera poses, but epipolar distance is used here.
|
90 |
-
|
91 |
-
# matching info
|
92 |
-
if alpha == 'dynamic':
|
93 |
-
alpha = dynamic_alpha(len(correct_mask))
|
94 |
-
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
|
95 |
-
|
96 |
-
text = [
|
97 |
-
f'#Matches {len(kpts0)}',
|
98 |
-
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}',
|
99 |
-
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}'
|
100 |
-
]
|
101 |
-
|
102 |
-
# make the figure
|
103 |
-
figure = make_matching_figure(img0, img1, kpts0, kpts1,
|
104 |
-
color, text=text)
|
105 |
-
return figure
|
106 |
-
|
107 |
-
def _make_confidence_figure(data, b_id):
|
108 |
-
# TODO: Implement confidence figure
|
109 |
-
raise NotImplementedError()
|
110 |
-
|
111 |
-
|
112 |
-
def make_matching_figures(data, config, mode='evaluation'):
|
113 |
-
""" Make matching figures for a batch.
|
114 |
-
|
115 |
-
Args:
|
116 |
-
data (Dict): a batch updated by PL_LoFTR.
|
117 |
-
config (Dict): matcher config
|
118 |
-
Returns:
|
119 |
-
figures (Dict[str, List[plt.figure]]
|
120 |
-
"""
|
121 |
-
assert mode in ['evaluation', 'confidence'] # 'confidence'
|
122 |
-
figures = {mode: []}
|
123 |
-
for b_id in range(data['image0'].size(0)):
|
124 |
-
if mode == 'evaluation':
|
125 |
-
fig = _make_evaluation_figure(
|
126 |
-
data, b_id,
|
127 |
-
alpha=config.TRAINER.PLOT_MATCHES_ALPHA)
|
128 |
-
elif mode == 'confidence':
|
129 |
-
fig = _make_confidence_figure(data, b_id)
|
130 |
-
else:
|
131 |
-
raise ValueError(f'Unknown plot mode: {mode}')
|
132 |
-
figures[mode].append(fig)
|
133 |
-
return figures
|
134 |
-
|
135 |
-
|
136 |
-
def dynamic_alpha(n_matches,
|
137 |
-
milestones=[0, 300, 1000, 2000],
|
138 |
-
alphas=[1.0, 0.8, 0.4, 0.2]):
|
139 |
-
if n_matches == 0:
|
140 |
-
return 1.0
|
141 |
-
ranges = list(zip(alphas, alphas[1:] + [None]))
|
142 |
-
loc = bisect.bisect_right(milestones, n_matches) - 1
|
143 |
-
_range = ranges[loc]
|
144 |
-
if _range[1] is None:
|
145 |
-
return _range[0]
|
146 |
-
return _range[1] + (milestones[loc + 1] - n_matches) / (
|
147 |
-
milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1])
|
148 |
-
|
149 |
-
|
150 |
-
def error_colormap(err, thr, alpha=1.0):
|
151 |
-
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
152 |
-
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
153 |
-
return np.clip(
|
154 |
-
np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/utils/plt_utils.py
DELETED
@@ -1,318 +0,0 @@
|
|
1 |
-
import os.path as osp
|
2 |
-
import os
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import torch
|
5 |
-
import cv2
|
6 |
-
import math
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import tqdm
|
10 |
-
from cv2 import findContours
|
11 |
-
from dl_ext.primitive import safe_zip
|
12 |
-
from dl_ext.timer import EvalTime
|
13 |
-
|
14 |
-
|
15 |
-
def plot_confidence(confidence):
|
16 |
-
n = len(confidence)
|
17 |
-
plt.plot(np.arange(n), confidence)
|
18 |
-
plt.show()
|
19 |
-
|
20 |
-
|
21 |
-
def image_grid(
|
22 |
-
images,
|
23 |
-
rows=None,
|
24 |
-
cols=None,
|
25 |
-
fill: bool = True,
|
26 |
-
show_axes: bool = False,
|
27 |
-
rgb=None,
|
28 |
-
show=True,
|
29 |
-
label=None,
|
30 |
-
**kwargs
|
31 |
-
):
|
32 |
-
"""
|
33 |
-
A util function for plotting a grid of images.
|
34 |
-
Args:
|
35 |
-
images: (N, H, W, 4) array of RGBA images
|
36 |
-
rows: number of rows in the grid
|
37 |
-
cols: number of columns in the grid
|
38 |
-
fill: boolean indicating if the space between images should be filled
|
39 |
-
show_axes: boolean indicating if the axes of the plots should be visible
|
40 |
-
rgb: boolean, If True, only RGB channels are plotted.
|
41 |
-
If False, only the alpha channel is plotted.
|
42 |
-
Returns:
|
43 |
-
None
|
44 |
-
"""
|
45 |
-
evaltime = EvalTime(disable=True)
|
46 |
-
evaltime('')
|
47 |
-
if isinstance(images, torch.Tensor):
|
48 |
-
images = images.detach().cpu()
|
49 |
-
if len(images[0].shape) == 2:
|
50 |
-
rgb = False
|
51 |
-
if images[0].shape[-1] == 2:
|
52 |
-
# flow
|
53 |
-
images = [flow_to_image(im) for im in images]
|
54 |
-
if (rows is None) != (cols is None):
|
55 |
-
raise ValueError("Specify either both rows and cols or neither.")
|
56 |
-
|
57 |
-
if rows is None:
|
58 |
-
rows = int(len(images) ** 0.5)
|
59 |
-
cols = math.ceil(len(images) / rows)
|
60 |
-
|
61 |
-
gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {}
|
62 |
-
if len(images) < 50:
|
63 |
-
figsize = (10, 10)
|
64 |
-
else:
|
65 |
-
figsize = (15, 15)
|
66 |
-
evaltime('0.5')
|
67 |
-
plt.figure(figsize=figsize)
|
68 |
-
# fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=figsize)
|
69 |
-
if label:
|
70 |
-
# fig.suptitle(label, fontsize=30)
|
71 |
-
plt.suptitle(label, fontsize=30)
|
72 |
-
# bleed = 0
|
73 |
-
# fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed))
|
74 |
-
evaltime('subplots')
|
75 |
-
|
76 |
-
# for i, (ax, im) in enumerate(tqdm.tqdm(zip(axarr.ravel(), images), leave=True, total=len(images))):
|
77 |
-
for i in range(len(images)):
|
78 |
-
# evaltime(f'{i} begin')
|
79 |
-
plt.subplot(rows, cols, i + 1)
|
80 |
-
if rgb:
|
81 |
-
# only render RGB channels
|
82 |
-
plt.imshow(images[i][..., :3], **kwargs)
|
83 |
-
# ax.imshow(im[..., :3], **kwargs)
|
84 |
-
else:
|
85 |
-
# only render Alpha channel
|
86 |
-
plt.imshow(images[i], **kwargs)
|
87 |
-
# ax.imshow(im, **kwargs)
|
88 |
-
if not show_axes:
|
89 |
-
plt.axis('off')
|
90 |
-
# ax.set_axis_off()
|
91 |
-
# ax.set_title(f'{i}')
|
92 |
-
plt.title(f'{i}')
|
93 |
-
# evaltime(f'{i} end')
|
94 |
-
evaltime('2')
|
95 |
-
if show:
|
96 |
-
plt.show()
|
97 |
-
# return fig
|
98 |
-
|
99 |
-
|
100 |
-
def depth_grid(
|
101 |
-
depths,
|
102 |
-
rows=None,
|
103 |
-
cols=None,
|
104 |
-
fill: bool = True,
|
105 |
-
show_axes: bool = False,
|
106 |
-
):
|
107 |
-
"""
|
108 |
-
A util function for plotting a grid of images.
|
109 |
-
Args:
|
110 |
-
images: (N, H, W, 4) array of RGBA images
|
111 |
-
rows: number of rows in the grid
|
112 |
-
cols: number of columns in the grid
|
113 |
-
fill: boolean indicating if the space between images should be filled
|
114 |
-
show_axes: boolean indicating if the axes of the plots should be visible
|
115 |
-
rgb: boolean, If True, only RGB channels are plotted.
|
116 |
-
If False, only the alpha channel is plotted.
|
117 |
-
Returns:
|
118 |
-
None
|
119 |
-
"""
|
120 |
-
if (rows is None) != (cols is None):
|
121 |
-
raise ValueError("Specify either both rows and cols or neither.")
|
122 |
-
|
123 |
-
if rows is None:
|
124 |
-
rows = len(depths)
|
125 |
-
cols = 1
|
126 |
-
|
127 |
-
gridspec_kw = {"wspace": 0.0, "hspace": 0.0} if fill else {}
|
128 |
-
fig, axarr = plt.subplots(rows, cols, gridspec_kw=gridspec_kw, figsize=(15, 9))
|
129 |
-
bleed = 0
|
130 |
-
fig.subplots_adjust(left=bleed, bottom=bleed, right=(1 - bleed), top=(1 - bleed))
|
131 |
-
|
132 |
-
for ax, im in zip(axarr.ravel(), depths):
|
133 |
-
ax.imshow(im)
|
134 |
-
if not show_axes:
|
135 |
-
ax.set_axis_off()
|
136 |
-
plt.show()
|
137 |
-
|
138 |
-
|
139 |
-
def hover_masks_on_imgs(images, masks):
|
140 |
-
masks = np.array(masks)
|
141 |
-
new_imgs = []
|
142 |
-
tids = list(range(1, masks.max() + 1))
|
143 |
-
colors = colormap(rgb=True, lighten=True)
|
144 |
-
for im, mask in tqdm.tqdm(safe_zip(images, masks), total=len(images)):
|
145 |
-
for tid in tids:
|
146 |
-
im = vis_mask(
|
147 |
-
im,
|
148 |
-
(mask == tid).astype(np.uint8),
|
149 |
-
color=colors[tid],
|
150 |
-
alpha=0.5,
|
151 |
-
border_alpha=0.5,
|
152 |
-
border_color=[255, 255, 255],
|
153 |
-
border_thick=3)
|
154 |
-
new_imgs.append(im)
|
155 |
-
return new_imgs
|
156 |
-
|
157 |
-
|
158 |
-
def vis_mask(img,
|
159 |
-
mask,
|
160 |
-
color=[255, 255, 255],
|
161 |
-
alpha=0.4,
|
162 |
-
show_border=True,
|
163 |
-
border_alpha=0.5,
|
164 |
-
border_thick=1,
|
165 |
-
border_color=None):
|
166 |
-
"""Visualizes a single binary mask."""
|
167 |
-
if isinstance(mask, torch.Tensor):
|
168 |
-
from anypose.utils.pn_utils import to_array
|
169 |
-
mask = to_array(mask > 0).astype(np.uint8)
|
170 |
-
img = img.astype(np.float32)
|
171 |
-
idx = np.nonzero(mask)
|
172 |
-
|
173 |
-
img[idx[0], idx[1], :] *= 1.0 - alpha
|
174 |
-
img[idx[0], idx[1], :] += [alpha * x for x in color]
|
175 |
-
|
176 |
-
if show_border:
|
177 |
-
contours, _ = findContours(
|
178 |
-
mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
179 |
-
# contours = [c for c in contours if c.shape[0] > 10]
|
180 |
-
if border_color is None:
|
181 |
-
border_color = color
|
182 |
-
if not isinstance(border_color, list):
|
183 |
-
border_color = border_color.tolist()
|
184 |
-
if border_alpha < 1:
|
185 |
-
with_border = img.copy()
|
186 |
-
cv2.drawContours(with_border, contours, -1, border_color,
|
187 |
-
border_thick, cv2.LINE_AA)
|
188 |
-
img = (1 - border_alpha) * img + border_alpha * with_border
|
189 |
-
else:
|
190 |
-
cv2.drawContours(img, contours, -1, border_color, border_thick,
|
191 |
-
cv2.LINE_AA)
|
192 |
-
|
193 |
-
return img.astype(np.uint8)
|
194 |
-
|
195 |
-
|
196 |
-
def colormap(rgb=False, lighten=True):
|
197 |
-
"""Copied from Detectron codebase."""
|
198 |
-
color_list = np.array(
|
199 |
-
[
|
200 |
-
0.000, 0.447, 0.741,
|
201 |
-
0.850, 0.325, 0.098,
|
202 |
-
0.929, 0.694, 0.125,
|
203 |
-
0.494, 0.184, 0.556,
|
204 |
-
0.466, 0.674, 0.188,
|
205 |
-
0.301, 0.745, 0.933,
|
206 |
-
0.635, 0.078, 0.184,
|
207 |
-
0.300, 0.300, 0.300,
|
208 |
-
0.600, 0.600, 0.600,
|
209 |
-
1.000, 0.000, 0.000,
|
210 |
-
1.000, 0.500, 0.000,
|
211 |
-
0.749, 0.749, 0.000,
|
212 |
-
0.000, 1.000, 0.000,
|
213 |
-
0.000, 0.000, 1.000,
|
214 |
-
0.667, 0.000, 1.000,
|
215 |
-
0.333, 0.333, 0.000,
|
216 |
-
0.333, 0.667, 0.000,
|
217 |
-
0.333, 1.000, 0.000,
|
218 |
-
0.667, 0.333, 0.000,
|
219 |
-
0.667, 0.667, 0.000,
|
220 |
-
0.667, 1.000, 0.000,
|
221 |
-
1.000, 0.333, 0.000,
|
222 |
-
1.000, 0.667, 0.000,
|
223 |
-
1.000, 1.000, 0.000,
|
224 |
-
0.000, 0.333, 0.500,
|
225 |
-
0.000, 0.667, 0.500,
|
226 |
-
0.000, 1.000, 0.500,
|
227 |
-
0.333, 0.000, 0.500,
|
228 |
-
0.333, 0.333, 0.500,
|
229 |
-
0.333, 0.667, 0.500,
|
230 |
-
0.333, 1.000, 0.500,
|
231 |
-
0.667, 0.000, 0.500,
|
232 |
-
0.667, 0.333, 0.500,
|
233 |
-
0.667, 0.667, 0.500,
|
234 |
-
0.667, 1.000, 0.500,
|
235 |
-
1.000, 0.000, 0.500,
|
236 |
-
1.000, 0.333, 0.500,
|
237 |
-
1.000, 0.667, 0.500,
|
238 |
-
1.000, 1.000, 0.500,
|
239 |
-
0.000, 0.333, 1.000,
|
240 |
-
0.000, 0.667, 1.000,
|
241 |
-
0.000, 1.000, 1.000,
|
242 |
-
0.333, 0.000, 1.000,
|
243 |
-
0.333, 0.333, 1.000,
|
244 |
-
0.333, 0.667, 1.000,
|
245 |
-
0.333, 1.000, 1.000,
|
246 |
-
0.667, 0.000, 1.000,
|
247 |
-
0.667, 0.333, 1.000,
|
248 |
-
0.667, 0.667, 1.000,
|
249 |
-
0.667, 1.000, 1.000,
|
250 |
-
1.000, 0.000, 1.000,
|
251 |
-
1.000, 0.333, 1.000,
|
252 |
-
1.000, 0.667, 1.000,
|
253 |
-
0.167, 0.000, 0.000,
|
254 |
-
0.333, 0.000, 0.000,
|
255 |
-
0.500, 0.000, 0.000,
|
256 |
-
0.667, 0.000, 0.000,
|
257 |
-
0.833, 0.000, 0.000,
|
258 |
-
1.000, 0.000, 0.000,
|
259 |
-
0.000, 0.167, 0.000,
|
260 |
-
0.000, 0.333, 0.000,
|
261 |
-
0.000, 0.500, 0.000,
|
262 |
-
0.000, 0.667, 0.000,
|
263 |
-
0.000, 0.833, 0.000,
|
264 |
-
0.000, 1.000, 0.000,
|
265 |
-
0.000, 0.000, 0.167,
|
266 |
-
0.000, 0.000, 0.333,
|
267 |
-
0.000, 0.000, 0.500,
|
268 |
-
0.000, 0.000, 0.667,
|
269 |
-
0.000, 0.000, 0.833,
|
270 |
-
0.000, 0.000, 1.000,
|
271 |
-
0.000, 0.000, 0.000,
|
272 |
-
0.143, 0.143, 0.143,
|
273 |
-
0.286, 0.286, 0.286,
|
274 |
-
0.429, 0.429, 0.429,
|
275 |
-
0.571, 0.571, 0.571,
|
276 |
-
0.714, 0.714, 0.714,
|
277 |
-
0.857, 0.857, 0.857,
|
278 |
-
1.000, 1.000, 1.000
|
279 |
-
]
|
280 |
-
).astype(np.float32)
|
281 |
-
color_list = color_list.reshape((-1, 3))
|
282 |
-
if not rgb:
|
283 |
-
color_list = color_list[:, ::-1]
|
284 |
-
|
285 |
-
if lighten:
|
286 |
-
# Make all the colors a little lighter / whiter. This is copied
|
287 |
-
# from the detectron visualization code (search for 'w_ratio').
|
288 |
-
w_ratio = 0.4
|
289 |
-
color_list = (color_list * (1 - w_ratio) + w_ratio)
|
290 |
-
return color_list * 255
|
291 |
-
|
292 |
-
|
293 |
-
def vis_layer_mask(masks, save_path=None):
|
294 |
-
masks = torch.as_tensor(masks)
|
295 |
-
tids = masks.unique().tolist()
|
296 |
-
tids.remove(0)
|
297 |
-
for tid in tqdm.tqdm(tids):
|
298 |
-
show = save_path is None
|
299 |
-
image_grid(masks == tid, label=f'{tid}', show=show)
|
300 |
-
if save_path:
|
301 |
-
os.makedirs(osp.dirname(save_path), exist_ok=True)
|
302 |
-
plt.savefig(save_path % tid)
|
303 |
-
plt.close('all')
|
304 |
-
|
305 |
-
|
306 |
-
def show(x, **kwargs):
|
307 |
-
if isinstance(x, torch.Tensor):
|
308 |
-
x = x.detach().cpu()
|
309 |
-
plt.imshow(x, **kwargs)
|
310 |
-
plt.show()
|
311 |
-
|
312 |
-
|
313 |
-
def vis_title(rgb, text, shift_y=30):
|
314 |
-
tmp = rgb.copy()
|
315 |
-
shift_x = rgb.shape[1] // 2
|
316 |
-
cv2.putText(tmp, text,
|
317 |
-
(shift_x, shift_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=2, lineType=cv2.LINE_AA)
|
318 |
-
return tmp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/utils/utils3d.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
|
4 |
-
|
5 |
-
def cart_to_hom(pts):
|
6 |
-
"""
|
7 |
-
:param pts: (N, 3 or 2)
|
8 |
-
:return pts_hom: (N, 4 or 3)
|
9 |
-
"""
|
10 |
-
if isinstance(pts, np.ndarray):
|
11 |
-
pts_hom = np.concatenate((pts, np.ones([*pts.shape[:-1], 1], dtype=np.float32)), -1)
|
12 |
-
else:
|
13 |
-
ones = torch.ones([*pts.shape[:-1], 1], dtype=torch.float32, device=pts.device)
|
14 |
-
pts_hom = torch.cat((pts, ones), dim=-1)
|
15 |
-
return pts_hom
|
16 |
-
|
17 |
-
|
18 |
-
def hom_to_cart(pts):
|
19 |
-
return pts[..., :-1] / pts[..., -1:]
|
20 |
-
|
21 |
-
|
22 |
-
def canonical_to_camera(pts, pose):
|
23 |
-
pts = cart_to_hom(pts)
|
24 |
-
pts = pts @ pose.transpose(-1, -2)
|
25 |
-
pts = hom_to_cart(pts)
|
26 |
-
return pts
|
27 |
-
|
28 |
-
|
29 |
-
def rect_to_img(K, pts_rect):
|
30 |
-
from dl_ext.vision_ext.datasets.kitti.structures import Calibration
|
31 |
-
pts_2d_hom = pts_rect @ K.t()
|
32 |
-
pts_img = Calibration.hom_to_cart(pts_2d_hom)
|
33 |
-
return pts_img
|
34 |
-
|
35 |
-
|
36 |
-
def calc_pose(phis, thetas, size, radius=1.2):
|
37 |
-
import torch
|
38 |
-
def normalize(vectors):
|
39 |
-
return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10)
|
40 |
-
|
41 |
-
device = torch.device('cuda')
|
42 |
-
thetas = torch.FloatTensor(thetas).to(device)
|
43 |
-
phis = torch.FloatTensor(phis).to(device)
|
44 |
-
|
45 |
-
centers = torch.stack([
|
46 |
-
radius * torch.sin(thetas) * torch.sin(phis),
|
47 |
-
-radius * torch.cos(thetas) * torch.sin(phis),
|
48 |
-
radius * torch.cos(phis),
|
49 |
-
], dim=-1) # [B, 3]
|
50 |
-
|
51 |
-
# lookat
|
52 |
-
forward_vector = normalize(centers).squeeze(0)
|
53 |
-
up_vector = torch.FloatTensor([0, 0, 1]).to(device).unsqueeze(0).repeat(size, 1)
|
54 |
-
right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1))
|
55 |
-
if right_vector.pow(2).sum() < 0.01:
|
56 |
-
right_vector = torch.FloatTensor([0, 1, 0]).to(device).unsqueeze(0).repeat(size, 1)
|
57 |
-
up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1))
|
58 |
-
|
59 |
-
poses = torch.eye(4, dtype=torch.float, device=device).unsqueeze(0).repeat(size, 1, 1)
|
60 |
-
poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1)
|
61 |
-
poses[:, :3, 3] = centers
|
62 |
-
return poses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/elevation_estimate/utils/weights/.gitkeep
DELETED
File without changes
|
One-2-3-45-master 2/example.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
One-2-3-45-master 2/ldm/data/__init__.py
DELETED
File without changes
|
One-2-3-45-master 2/ldm/data/base.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
from abc import abstractmethod
|
4 |
-
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
5 |
-
|
6 |
-
|
7 |
-
class Txt2ImgIterableBaseDataset(IterableDataset):
|
8 |
-
'''
|
9 |
-
Define an interface to make the IterableDatasets for text2img data chainable
|
10 |
-
'''
|
11 |
-
def __init__(self, num_records=0, valid_ids=None, size=256):
|
12 |
-
super().__init__()
|
13 |
-
self.num_records = num_records
|
14 |
-
self.valid_ids = valid_ids
|
15 |
-
self.sample_ids = valid_ids
|
16 |
-
self.size = size
|
17 |
-
|
18 |
-
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
19 |
-
|
20 |
-
def __len__(self):
|
21 |
-
return self.num_records
|
22 |
-
|
23 |
-
@abstractmethod
|
24 |
-
def __iter__(self):
|
25 |
-
pass
|
26 |
-
|
27 |
-
|
28 |
-
class PRNGMixin(object):
|
29 |
-
"""
|
30 |
-
Adds a prng property which is a numpy RandomState which gets
|
31 |
-
reinitialized whenever the pid changes to avoid synchronized sampling
|
32 |
-
behavior when used in conjunction with multiprocessing.
|
33 |
-
"""
|
34 |
-
@property
|
35 |
-
def prng(self):
|
36 |
-
currentpid = os.getpid()
|
37 |
-
if getattr(self, "_initpid", None) != currentpid:
|
38 |
-
self._initpid = currentpid
|
39 |
-
self._prng = np.random.RandomState()
|
40 |
-
return self._prng
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/coco.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import albumentations
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
from tqdm import tqdm
|
7 |
-
from torch.utils.data import Dataset
|
8 |
-
from abc import abstractmethod
|
9 |
-
|
10 |
-
|
11 |
-
class CocoBase(Dataset):
|
12 |
-
"""needed for (image, caption, segmentation) pairs"""
|
13 |
-
def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
|
14 |
-
crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
|
15 |
-
self.split = self.get_split()
|
16 |
-
self.size = size
|
17 |
-
if crop_size is None:
|
18 |
-
self.crop_size = size
|
19 |
-
else:
|
20 |
-
self.crop_size = crop_size
|
21 |
-
|
22 |
-
assert crop_type in [None, 'random', 'center']
|
23 |
-
self.crop_type = crop_type
|
24 |
-
self.use_segmenation = use_segmentation
|
25 |
-
self.onehot = onehot_segmentation # return segmentation as rgb or one hot
|
26 |
-
self.stuffthing = use_stuffthing # include thing in segmentation
|
27 |
-
if self.onehot and not self.stuffthing:
|
28 |
-
raise NotImplemented("One hot mode is only supported for the "
|
29 |
-
"stuffthings version because labels are stored "
|
30 |
-
"a bit different.")
|
31 |
-
|
32 |
-
data_json = datajson
|
33 |
-
with open(data_json) as json_file:
|
34 |
-
self.json_data = json.load(json_file)
|
35 |
-
self.img_id_to_captions = dict()
|
36 |
-
self.img_id_to_filepath = dict()
|
37 |
-
self.img_id_to_segmentation_filepath = dict()
|
38 |
-
|
39 |
-
assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
|
40 |
-
f"captions_val{self.year()}.json"]
|
41 |
-
# TODO currently hardcoded paths, would be better to follow logic in
|
42 |
-
# cocstuff pixelmaps
|
43 |
-
if self.use_segmenation:
|
44 |
-
if self.stuffthing:
|
45 |
-
self.segmentation_prefix = (
|
46 |
-
f"data/cocostuffthings/val{self.year()}" if
|
47 |
-
data_json.endswith(f"captions_val{self.year()}.json") else
|
48 |
-
f"data/cocostuffthings/train{self.year()}")
|
49 |
-
else:
|
50 |
-
self.segmentation_prefix = (
|
51 |
-
f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
|
52 |
-
data_json.endswith(f"captions_val{self.year()}.json") else
|
53 |
-
f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
|
54 |
-
|
55 |
-
imagedirs = self.json_data["images"]
|
56 |
-
self.labels = {"image_ids": list()}
|
57 |
-
for imgdir in tqdm(imagedirs, desc="ImgToPath"):
|
58 |
-
self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
|
59 |
-
self.img_id_to_captions[imgdir["id"]] = list()
|
60 |
-
pngfilename = imgdir["file_name"].replace("jpg", "png")
|
61 |
-
if self.use_segmenation:
|
62 |
-
self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
|
63 |
-
self.segmentation_prefix, pngfilename)
|
64 |
-
if given_files is not None:
|
65 |
-
if pngfilename in given_files:
|
66 |
-
self.labels["image_ids"].append(imgdir["id"])
|
67 |
-
else:
|
68 |
-
self.labels["image_ids"].append(imgdir["id"])
|
69 |
-
|
70 |
-
capdirs = self.json_data["annotations"]
|
71 |
-
for capdir in tqdm(capdirs, desc="ImgToCaptions"):
|
72 |
-
# there are in average 5 captions per image
|
73 |
-
#self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
|
74 |
-
self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
|
75 |
-
|
76 |
-
self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
|
77 |
-
if self.split=="validation":
|
78 |
-
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
79 |
-
else:
|
80 |
-
# default option for train is random crop
|
81 |
-
if self.crop_type in [None, 'random']:
|
82 |
-
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
|
83 |
-
else:
|
84 |
-
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
85 |
-
self.preprocessor = albumentations.Compose(
|
86 |
-
[self.rescaler, self.cropper],
|
87 |
-
additional_targets={"segmentation": "image"})
|
88 |
-
if force_no_crop:
|
89 |
-
self.rescaler = albumentations.Resize(height=self.size, width=self.size)
|
90 |
-
self.preprocessor = albumentations.Compose(
|
91 |
-
[self.rescaler],
|
92 |
-
additional_targets={"segmentation": "image"})
|
93 |
-
|
94 |
-
@abstractmethod
|
95 |
-
def year(self):
|
96 |
-
raise NotImplementedError()
|
97 |
-
|
98 |
-
def __len__(self):
|
99 |
-
return len(self.labels["image_ids"])
|
100 |
-
|
101 |
-
def preprocess_image(self, image_path, segmentation_path=None):
|
102 |
-
image = Image.open(image_path)
|
103 |
-
if not image.mode == "RGB":
|
104 |
-
image = image.convert("RGB")
|
105 |
-
image = np.array(image).astype(np.uint8)
|
106 |
-
if segmentation_path:
|
107 |
-
segmentation = Image.open(segmentation_path)
|
108 |
-
if not self.onehot and not segmentation.mode == "RGB":
|
109 |
-
segmentation = segmentation.convert("RGB")
|
110 |
-
segmentation = np.array(segmentation).astype(np.uint8)
|
111 |
-
if self.onehot:
|
112 |
-
assert self.stuffthing
|
113 |
-
# stored in caffe format: unlabeled==255. stuff and thing from
|
114 |
-
# 0-181. to be compatible with the labels in
|
115 |
-
# https://github.com/nightrome/cocostuff/blob/master/labels.txt
|
116 |
-
# we shift stuffthing one to the right and put unlabeled in zero
|
117 |
-
# as long as segmentation is uint8 shifting to right handles the
|
118 |
-
# latter too
|
119 |
-
assert segmentation.dtype == np.uint8
|
120 |
-
segmentation = segmentation + 1
|
121 |
-
|
122 |
-
processed = self.preprocessor(image=image, segmentation=segmentation)
|
123 |
-
|
124 |
-
image, segmentation = processed["image"], processed["segmentation"]
|
125 |
-
else:
|
126 |
-
image = self.preprocessor(image=image,)['image']
|
127 |
-
|
128 |
-
image = (image / 127.5 - 1.0).astype(np.float32)
|
129 |
-
if segmentation_path:
|
130 |
-
if self.onehot:
|
131 |
-
assert segmentation.dtype == np.uint8
|
132 |
-
# make it one hot
|
133 |
-
n_labels = 183
|
134 |
-
flatseg = np.ravel(segmentation)
|
135 |
-
onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
|
136 |
-
onehot[np.arange(flatseg.size), flatseg] = True
|
137 |
-
onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
|
138 |
-
segmentation = onehot
|
139 |
-
else:
|
140 |
-
segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
|
141 |
-
return image, segmentation
|
142 |
-
else:
|
143 |
-
return image
|
144 |
-
|
145 |
-
def __getitem__(self, i):
|
146 |
-
img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
|
147 |
-
if self.use_segmenation:
|
148 |
-
seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
|
149 |
-
image, segmentation = self.preprocess_image(img_path, seg_path)
|
150 |
-
else:
|
151 |
-
image = self.preprocess_image(img_path)
|
152 |
-
captions = self.img_id_to_captions[self.labels["image_ids"][i]]
|
153 |
-
# randomly draw one of all available captions per image
|
154 |
-
caption = captions[np.random.randint(0, len(captions))]
|
155 |
-
example = {"image": image,
|
156 |
-
#"caption": [str(caption[0])],
|
157 |
-
"caption": caption,
|
158 |
-
"img_path": img_path,
|
159 |
-
"filename_": img_path.split(os.sep)[-1]
|
160 |
-
}
|
161 |
-
if self.use_segmenation:
|
162 |
-
example.update({"seg_path": seg_path, 'segmentation': segmentation})
|
163 |
-
return example
|
164 |
-
|
165 |
-
|
166 |
-
class CocoImagesAndCaptionsTrain2017(CocoBase):
|
167 |
-
"""returns a pair of (image, caption)"""
|
168 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
|
169 |
-
super().__init__(size=size,
|
170 |
-
dataroot="data/coco/train2017",
|
171 |
-
datajson="data/coco/annotations/captions_train2017.json",
|
172 |
-
onehot_segmentation=onehot_segmentation,
|
173 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
|
174 |
-
|
175 |
-
def get_split(self):
|
176 |
-
return "train"
|
177 |
-
|
178 |
-
def year(self):
|
179 |
-
return '2017'
|
180 |
-
|
181 |
-
|
182 |
-
class CocoImagesAndCaptionsValidation2017(CocoBase):
|
183 |
-
"""returns a pair of (image, caption)"""
|
184 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
185 |
-
given_files=None):
|
186 |
-
super().__init__(size=size,
|
187 |
-
dataroot="data/coco/val2017",
|
188 |
-
datajson="data/coco/annotations/captions_val2017.json",
|
189 |
-
onehot_segmentation=onehot_segmentation,
|
190 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
191 |
-
given_files=given_files)
|
192 |
-
|
193 |
-
def get_split(self):
|
194 |
-
return "validation"
|
195 |
-
|
196 |
-
def year(self):
|
197 |
-
return '2017'
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
class CocoImagesAndCaptionsTrain2014(CocoBase):
|
202 |
-
"""returns a pair of (image, caption)"""
|
203 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
|
204 |
-
super().__init__(size=size,
|
205 |
-
dataroot="data/coco/train2014",
|
206 |
-
datajson="data/coco/annotations2014/annotations/captions_train2014.json",
|
207 |
-
onehot_segmentation=onehot_segmentation,
|
208 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
209 |
-
use_segmentation=False,
|
210 |
-
crop_type=crop_type)
|
211 |
-
|
212 |
-
def get_split(self):
|
213 |
-
return "train"
|
214 |
-
|
215 |
-
def year(self):
|
216 |
-
return '2014'
|
217 |
-
|
218 |
-
class CocoImagesAndCaptionsValidation2014(CocoBase):
|
219 |
-
"""returns a pair of (image, caption)"""
|
220 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
221 |
-
given_files=None,crop_type='center',**kwargs):
|
222 |
-
super().__init__(size=size,
|
223 |
-
dataroot="data/coco/val2014",
|
224 |
-
datajson="data/coco/annotations2014/annotations/captions_val2014.json",
|
225 |
-
onehot_segmentation=onehot_segmentation,
|
226 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
227 |
-
given_files=given_files,
|
228 |
-
use_segmentation=False,
|
229 |
-
crop_type=crop_type)
|
230 |
-
|
231 |
-
def get_split(self):
|
232 |
-
return "validation"
|
233 |
-
|
234 |
-
def year(self):
|
235 |
-
return '2014'
|
236 |
-
|
237 |
-
if __name__ == '__main__':
|
238 |
-
with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
|
239 |
-
json_data = json.load(json_file)
|
240 |
-
capdirs = json_data["annotations"]
|
241 |
-
import pudb; pudb.set_trace()
|
242 |
-
#d2 = CocoImagesAndCaptionsTrain2014(size=256)
|
243 |
-
d2 = CocoImagesAndCaptionsValidation2014(size=256)
|
244 |
-
print("constructed dataset.")
|
245 |
-
print(f"length of {d2.__class__.__name__}: {len(d2)}")
|
246 |
-
|
247 |
-
ex2 = d2[0]
|
248 |
-
# ex3 = d3[0]
|
249 |
-
# print(ex1["image"].shape)
|
250 |
-
print(ex2["image"].shape)
|
251 |
-
# print(ex3["image"].shape)
|
252 |
-
# print(ex1["segmentation"].shape)
|
253 |
-
print(ex2["caption"].__class__.__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/dummy.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import random
|
3 |
-
import string
|
4 |
-
from torch.utils.data import Dataset, Subset
|
5 |
-
|
6 |
-
class DummyData(Dataset):
|
7 |
-
def __init__(self, length, size):
|
8 |
-
self.length = length
|
9 |
-
self.size = size
|
10 |
-
|
11 |
-
def __len__(self):
|
12 |
-
return self.length
|
13 |
-
|
14 |
-
def __getitem__(self, i):
|
15 |
-
x = np.random.randn(*self.size)
|
16 |
-
letters = string.ascii_lowercase
|
17 |
-
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
|
18 |
-
return {"jpg": x, "txt": y}
|
19 |
-
|
20 |
-
|
21 |
-
class DummyDataWithEmbeddings(Dataset):
|
22 |
-
def __init__(self, length, size, emb_size):
|
23 |
-
self.length = length
|
24 |
-
self.size = size
|
25 |
-
self.emb_size = emb_size
|
26 |
-
|
27 |
-
def __len__(self):
|
28 |
-
return self.length
|
29 |
-
|
30 |
-
def __getitem__(self, i):
|
31 |
-
x = np.random.randn(*self.size)
|
32 |
-
y = np.random.randn(*self.emb_size).astype(np.float32)
|
33 |
-
return {"jpg": x, "txt": y}
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/imagenet.py
DELETED
@@ -1,394 +0,0 @@
|
|
1 |
-
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
-
import cv2
|
3 |
-
import albumentations
|
4 |
-
import PIL
|
5 |
-
import numpy as np
|
6 |
-
import torchvision.transforms.functional as TF
|
7 |
-
from omegaconf import OmegaConf
|
8 |
-
from functools import partial
|
9 |
-
from PIL import Image
|
10 |
-
from tqdm import tqdm
|
11 |
-
from torch.utils.data import Dataset, Subset
|
12 |
-
|
13 |
-
import taming.data.utils as tdu
|
14 |
-
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
-
from taming.data.imagenet import ImagePaths
|
16 |
-
|
17 |
-
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
-
|
19 |
-
|
20 |
-
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
21 |
-
with open(path_to_yaml) as f:
|
22 |
-
di2s = yaml.load(f)
|
23 |
-
return dict((v,k) for k,v in di2s.items())
|
24 |
-
|
25 |
-
|
26 |
-
class ImageNetBase(Dataset):
|
27 |
-
def __init__(self, config=None):
|
28 |
-
self.config = config or OmegaConf.create()
|
29 |
-
if not type(self.config)==dict:
|
30 |
-
self.config = OmegaConf.to_container(self.config)
|
31 |
-
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
-
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
-
self._prepare()
|
34 |
-
self._prepare_synset_to_human()
|
35 |
-
self._prepare_idx_to_synset()
|
36 |
-
self._prepare_human_to_integer_label()
|
37 |
-
self._load()
|
38 |
-
|
39 |
-
def __len__(self):
|
40 |
-
return len(self.data)
|
41 |
-
|
42 |
-
def __getitem__(self, i):
|
43 |
-
return self.data[i]
|
44 |
-
|
45 |
-
def _prepare(self):
|
46 |
-
raise NotImplementedError()
|
47 |
-
|
48 |
-
def _filter_relpaths(self, relpaths):
|
49 |
-
ignore = set([
|
50 |
-
"n06596364_9591.JPEG",
|
51 |
-
])
|
52 |
-
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
-
if "sub_indices" in self.config:
|
54 |
-
indices = str_to_indices(self.config["sub_indices"])
|
55 |
-
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
-
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
-
files = []
|
58 |
-
for rpath in relpaths:
|
59 |
-
syn = rpath.split("/")[0]
|
60 |
-
if syn in synsets:
|
61 |
-
files.append(rpath)
|
62 |
-
return files
|
63 |
-
else:
|
64 |
-
return relpaths
|
65 |
-
|
66 |
-
def _prepare_synset_to_human(self):
|
67 |
-
SIZE = 2655750
|
68 |
-
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
-
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
-
if (not os.path.exists(self.human_dict) or
|
71 |
-
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
-
download(URL, self.human_dict)
|
73 |
-
|
74 |
-
def _prepare_idx_to_synset(self):
|
75 |
-
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
-
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
-
if (not os.path.exists(self.idx2syn)):
|
78 |
-
download(URL, self.idx2syn)
|
79 |
-
|
80 |
-
def _prepare_human_to_integer_label(self):
|
81 |
-
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
-
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
-
if (not os.path.exists(self.human2integer)):
|
84 |
-
download(URL, self.human2integer)
|
85 |
-
with open(self.human2integer, "r") as f:
|
86 |
-
lines = f.read().splitlines()
|
87 |
-
assert len(lines) == 1000
|
88 |
-
self.human2integer_dict = dict()
|
89 |
-
for line in lines:
|
90 |
-
value, key = line.split(":")
|
91 |
-
self.human2integer_dict[key] = int(value)
|
92 |
-
|
93 |
-
def _load(self):
|
94 |
-
with open(self.txt_filelist, "r") as f:
|
95 |
-
self.relpaths = f.read().splitlines()
|
96 |
-
l1 = len(self.relpaths)
|
97 |
-
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
-
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
-
|
100 |
-
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
-
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
-
|
103 |
-
unique_synsets = np.unique(self.synsets)
|
104 |
-
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
-
if not self.keep_orig_class_label:
|
106 |
-
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
-
else:
|
108 |
-
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
-
|
110 |
-
with open(self.human_dict, "r") as f:
|
111 |
-
human_dict = f.read().splitlines()
|
112 |
-
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
-
|
114 |
-
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
-
|
116 |
-
labels = {
|
117 |
-
"relpath": np.array(self.relpaths),
|
118 |
-
"synsets": np.array(self.synsets),
|
119 |
-
"class_label": np.array(self.class_labels),
|
120 |
-
"human_label": np.array(self.human_labels),
|
121 |
-
}
|
122 |
-
|
123 |
-
if self.process_images:
|
124 |
-
self.size = retrieve(self.config, "size", default=256)
|
125 |
-
self.data = ImagePaths(self.abspaths,
|
126 |
-
labels=labels,
|
127 |
-
size=self.size,
|
128 |
-
random_crop=self.random_crop,
|
129 |
-
)
|
130 |
-
else:
|
131 |
-
self.data = self.abspaths
|
132 |
-
|
133 |
-
|
134 |
-
class ImageNetTrain(ImageNetBase):
|
135 |
-
NAME = "ILSVRC2012_train"
|
136 |
-
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
-
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
-
FILES = [
|
139 |
-
"ILSVRC2012_img_train.tar",
|
140 |
-
]
|
141 |
-
SIZES = [
|
142 |
-
147897477120,
|
143 |
-
]
|
144 |
-
|
145 |
-
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
-
self.process_images = process_images
|
147 |
-
self.data_root = data_root
|
148 |
-
super().__init__(**kwargs)
|
149 |
-
|
150 |
-
def _prepare(self):
|
151 |
-
if self.data_root:
|
152 |
-
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
-
else:
|
154 |
-
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
-
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
-
|
157 |
-
self.datadir = os.path.join(self.root, "data")
|
158 |
-
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
-
self.expected_length = 1281167
|
160 |
-
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
-
default=True)
|
162 |
-
if not tdu.is_prepared(self.root):
|
163 |
-
# prep
|
164 |
-
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
-
|
166 |
-
datadir = self.datadir
|
167 |
-
if not os.path.exists(datadir):
|
168 |
-
path = os.path.join(self.root, self.FILES[0])
|
169 |
-
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
-
import academictorrents as at
|
171 |
-
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
-
assert atpath == path
|
173 |
-
|
174 |
-
print("Extracting {} to {}".format(path, datadir))
|
175 |
-
os.makedirs(datadir, exist_ok=True)
|
176 |
-
with tarfile.open(path, "r:") as tar:
|
177 |
-
tar.extractall(path=datadir)
|
178 |
-
|
179 |
-
print("Extracting sub-tars.")
|
180 |
-
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
-
for subpath in tqdm(subpaths):
|
182 |
-
subdir = subpath[:-len(".tar")]
|
183 |
-
os.makedirs(subdir, exist_ok=True)
|
184 |
-
with tarfile.open(subpath, "r:") as tar:
|
185 |
-
tar.extractall(path=subdir)
|
186 |
-
|
187 |
-
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
-
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
-
filelist = sorted(filelist)
|
190 |
-
filelist = "\n".join(filelist)+"\n"
|
191 |
-
with open(self.txt_filelist, "w") as f:
|
192 |
-
f.write(filelist)
|
193 |
-
|
194 |
-
tdu.mark_prepared(self.root)
|
195 |
-
|
196 |
-
|
197 |
-
class ImageNetValidation(ImageNetBase):
|
198 |
-
NAME = "ILSVRC2012_validation"
|
199 |
-
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
-
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
-
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
-
FILES = [
|
203 |
-
"ILSVRC2012_img_val.tar",
|
204 |
-
"validation_synset.txt",
|
205 |
-
]
|
206 |
-
SIZES = [
|
207 |
-
6744924160,
|
208 |
-
1950000,
|
209 |
-
]
|
210 |
-
|
211 |
-
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
-
self.data_root = data_root
|
213 |
-
self.process_images = process_images
|
214 |
-
super().__init__(**kwargs)
|
215 |
-
|
216 |
-
def _prepare(self):
|
217 |
-
if self.data_root:
|
218 |
-
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
-
else:
|
220 |
-
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
-
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
-
self.datadir = os.path.join(self.root, "data")
|
223 |
-
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
-
self.expected_length = 50000
|
225 |
-
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
-
default=False)
|
227 |
-
if not tdu.is_prepared(self.root):
|
228 |
-
# prep
|
229 |
-
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
-
|
231 |
-
datadir = self.datadir
|
232 |
-
if not os.path.exists(datadir):
|
233 |
-
path = os.path.join(self.root, self.FILES[0])
|
234 |
-
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
-
import academictorrents as at
|
236 |
-
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
-
assert atpath == path
|
238 |
-
|
239 |
-
print("Extracting {} to {}".format(path, datadir))
|
240 |
-
os.makedirs(datadir, exist_ok=True)
|
241 |
-
with tarfile.open(path, "r:") as tar:
|
242 |
-
tar.extractall(path=datadir)
|
243 |
-
|
244 |
-
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
-
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
-
download(self.VS_URL, vspath)
|
247 |
-
|
248 |
-
with open(vspath, "r") as f:
|
249 |
-
synset_dict = f.read().splitlines()
|
250 |
-
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
-
|
252 |
-
print("Reorganizing into synset folders")
|
253 |
-
synsets = np.unique(list(synset_dict.values()))
|
254 |
-
for s in synsets:
|
255 |
-
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
-
for k, v in synset_dict.items():
|
257 |
-
src = os.path.join(datadir, k)
|
258 |
-
dst = os.path.join(datadir, v)
|
259 |
-
shutil.move(src, dst)
|
260 |
-
|
261 |
-
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
-
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
-
filelist = sorted(filelist)
|
264 |
-
filelist = "\n".join(filelist)+"\n"
|
265 |
-
with open(self.txt_filelist, "w") as f:
|
266 |
-
f.write(filelist)
|
267 |
-
|
268 |
-
tdu.mark_prepared(self.root)
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
class ImageNetSR(Dataset):
|
273 |
-
def __init__(self, size=None,
|
274 |
-
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
-
random_crop=True):
|
276 |
-
"""
|
277 |
-
Imagenet Superresolution Dataloader
|
278 |
-
Performs following ops in order:
|
279 |
-
1. crops a crop of size s from image either as random or center crop
|
280 |
-
2. resizes crop to size with cv2.area_interpolation
|
281 |
-
3. degrades resized crop with degradation_fn
|
282 |
-
|
283 |
-
:param size: resizing to size after cropping
|
284 |
-
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
-
:param downscale_f: Low Resolution Downsample factor
|
286 |
-
:param min_crop_f: determines crop size s,
|
287 |
-
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
-
:param max_crop_f: ""
|
289 |
-
:param data_root:
|
290 |
-
:param random_crop:
|
291 |
-
"""
|
292 |
-
self.base = self.get_base()
|
293 |
-
assert size
|
294 |
-
assert (size / downscale_f).is_integer()
|
295 |
-
self.size = size
|
296 |
-
self.LR_size = int(size / downscale_f)
|
297 |
-
self.min_crop_f = min_crop_f
|
298 |
-
self.max_crop_f = max_crop_f
|
299 |
-
assert(max_crop_f <= 1.)
|
300 |
-
self.center_crop = not random_crop
|
301 |
-
|
302 |
-
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
-
|
304 |
-
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
-
|
306 |
-
if degradation == "bsrgan":
|
307 |
-
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
-
|
309 |
-
elif degradation == "bsrgan_light":
|
310 |
-
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
-
|
312 |
-
else:
|
313 |
-
interpolation_fn = {
|
314 |
-
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
-
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
-
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
-
"cv_area": cv2.INTER_AREA,
|
318 |
-
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
-
"pil_nearest": PIL.Image.NEAREST,
|
320 |
-
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
-
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
-
"pil_box": PIL.Image.BOX,
|
323 |
-
"pil_hamming": PIL.Image.HAMMING,
|
324 |
-
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
-
}[degradation]
|
326 |
-
|
327 |
-
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
-
|
329 |
-
if self.pil_interpolation:
|
330 |
-
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
-
|
332 |
-
else:
|
333 |
-
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
-
interpolation=interpolation_fn)
|
335 |
-
|
336 |
-
def __len__(self):
|
337 |
-
return len(self.base)
|
338 |
-
|
339 |
-
def __getitem__(self, i):
|
340 |
-
example = self.base[i]
|
341 |
-
image = Image.open(example["file_path_"])
|
342 |
-
|
343 |
-
if not image.mode == "RGB":
|
344 |
-
image = image.convert("RGB")
|
345 |
-
|
346 |
-
image = np.array(image).astype(np.uint8)
|
347 |
-
|
348 |
-
min_side_len = min(image.shape[:2])
|
349 |
-
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
-
crop_side_len = int(crop_side_len)
|
351 |
-
|
352 |
-
if self.center_crop:
|
353 |
-
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
-
|
355 |
-
else:
|
356 |
-
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
-
|
358 |
-
image = self.cropper(image=image)["image"]
|
359 |
-
image = self.image_rescaler(image=image)["image"]
|
360 |
-
|
361 |
-
if self.pil_interpolation:
|
362 |
-
image_pil = PIL.Image.fromarray(image)
|
363 |
-
LR_image = self.degradation_process(image_pil)
|
364 |
-
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
-
|
366 |
-
else:
|
367 |
-
LR_image = self.degradation_process(image=image)["image"]
|
368 |
-
|
369 |
-
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
-
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
-
example["caption"] = example["human_label"] # dummy caption
|
372 |
-
return example
|
373 |
-
|
374 |
-
|
375 |
-
class ImageNetSRTrain(ImageNetSR):
|
376 |
-
def __init__(self, **kwargs):
|
377 |
-
super().__init__(**kwargs)
|
378 |
-
|
379 |
-
def get_base(self):
|
380 |
-
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
-
indices = pickle.load(f)
|
382 |
-
dset = ImageNetTrain(process_images=False,)
|
383 |
-
return Subset(dset, indices)
|
384 |
-
|
385 |
-
|
386 |
-
class ImageNetSRValidation(ImageNetSR):
|
387 |
-
def __init__(self, **kwargs):
|
388 |
-
super().__init__(**kwargs)
|
389 |
-
|
390 |
-
def get_base(self):
|
391 |
-
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
-
indices = pickle.load(f)
|
393 |
-
dset = ImageNetValidation(process_images=False,)
|
394 |
-
return Subset(dset, indices)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/inpainting/__init__.py
DELETED
File without changes
|
One-2-3-45-master 2/ldm/data/inpainting/synthetic_mask.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
from PIL import Image, ImageDraw
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
settings = {
|
5 |
-
"256narrow": {
|
6 |
-
"p_irr": 1,
|
7 |
-
"min_n_irr": 4,
|
8 |
-
"max_n_irr": 50,
|
9 |
-
"max_l_irr": 40,
|
10 |
-
"max_w_irr": 10,
|
11 |
-
"min_n_box": None,
|
12 |
-
"max_n_box": None,
|
13 |
-
"min_s_box": None,
|
14 |
-
"max_s_box": None,
|
15 |
-
"marg": None,
|
16 |
-
},
|
17 |
-
"256train": {
|
18 |
-
"p_irr": 0.5,
|
19 |
-
"min_n_irr": 1,
|
20 |
-
"max_n_irr": 5,
|
21 |
-
"max_l_irr": 200,
|
22 |
-
"max_w_irr": 100,
|
23 |
-
"min_n_box": 1,
|
24 |
-
"max_n_box": 4,
|
25 |
-
"min_s_box": 30,
|
26 |
-
"max_s_box": 150,
|
27 |
-
"marg": 10,
|
28 |
-
},
|
29 |
-
"512train": { # TODO: experimental
|
30 |
-
"p_irr": 0.5,
|
31 |
-
"min_n_irr": 1,
|
32 |
-
"max_n_irr": 5,
|
33 |
-
"max_l_irr": 450,
|
34 |
-
"max_w_irr": 250,
|
35 |
-
"min_n_box": 1,
|
36 |
-
"max_n_box": 4,
|
37 |
-
"min_s_box": 30,
|
38 |
-
"max_s_box": 300,
|
39 |
-
"marg": 10,
|
40 |
-
},
|
41 |
-
"512train-large": { # TODO: experimental
|
42 |
-
"p_irr": 0.5,
|
43 |
-
"min_n_irr": 1,
|
44 |
-
"max_n_irr": 5,
|
45 |
-
"max_l_irr": 450,
|
46 |
-
"max_w_irr": 400,
|
47 |
-
"min_n_box": 1,
|
48 |
-
"max_n_box": 4,
|
49 |
-
"min_s_box": 75,
|
50 |
-
"max_s_box": 450,
|
51 |
-
"marg": 10,
|
52 |
-
},
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
def gen_segment_mask(mask, start, end, brush_width):
|
57 |
-
mask = mask > 0
|
58 |
-
mask = (255 * mask).astype(np.uint8)
|
59 |
-
mask = Image.fromarray(mask)
|
60 |
-
draw = ImageDraw.Draw(mask)
|
61 |
-
draw.line([start, end], fill=255, width=brush_width, joint="curve")
|
62 |
-
mask = np.array(mask) / 255
|
63 |
-
return mask
|
64 |
-
|
65 |
-
|
66 |
-
def gen_box_mask(mask, masked):
|
67 |
-
x_0, y_0, w, h = masked
|
68 |
-
mask[y_0:y_0 + h, x_0:x_0 + w] = 1
|
69 |
-
return mask
|
70 |
-
|
71 |
-
|
72 |
-
def gen_round_mask(mask, masked, radius):
|
73 |
-
x_0, y_0, w, h = masked
|
74 |
-
xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
|
75 |
-
|
76 |
-
mask = mask > 0
|
77 |
-
mask = (255 * mask).astype(np.uint8)
|
78 |
-
mask = Image.fromarray(mask)
|
79 |
-
draw = ImageDraw.Draw(mask)
|
80 |
-
draw.rounded_rectangle(xy, radius=radius, fill=255)
|
81 |
-
mask = np.array(mask) / 255
|
82 |
-
return mask
|
83 |
-
|
84 |
-
|
85 |
-
def gen_large_mask(prng, img_h, img_w,
|
86 |
-
marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
|
87 |
-
min_n_box, max_n_box, min_s_box, max_s_box):
|
88 |
-
"""
|
89 |
-
img_h: int, an image height
|
90 |
-
img_w: int, an image width
|
91 |
-
marg: int, a margin for a box starting coordinate
|
92 |
-
p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
|
93 |
-
|
94 |
-
min_n_irr: int, min number of segments
|
95 |
-
max_n_irr: int, max number of segments
|
96 |
-
max_l_irr: max length of a segment in polygonal chain
|
97 |
-
max_w_irr: max width of a segment in polygonal chain
|
98 |
-
|
99 |
-
min_n_box: int, min bound for the number of box primitives
|
100 |
-
max_n_box: int, max bound for the number of box primitives
|
101 |
-
min_s_box: int, min length of a box side
|
102 |
-
max_s_box: int, max length of a box side
|
103 |
-
"""
|
104 |
-
|
105 |
-
mask = np.zeros((img_h, img_w))
|
106 |
-
uniform = prng.randint
|
107 |
-
|
108 |
-
if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
|
109 |
-
n = uniform(min_n_irr, max_n_irr) # sample number of segments
|
110 |
-
|
111 |
-
for _ in range(n):
|
112 |
-
y = uniform(0, img_h) # sample a starting point
|
113 |
-
x = uniform(0, img_w)
|
114 |
-
|
115 |
-
a = uniform(0, 360) # sample angle
|
116 |
-
l = uniform(10, max_l_irr) # sample segment length
|
117 |
-
w = uniform(5, max_w_irr) # sample a segment width
|
118 |
-
|
119 |
-
# draw segment starting from (x,y) to (x_,y_) using brush of width w
|
120 |
-
x_ = x + l * np.sin(a)
|
121 |
-
y_ = y + l * np.cos(a)
|
122 |
-
|
123 |
-
mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
|
124 |
-
x, y = x_, y_
|
125 |
-
else: # generate Box masks
|
126 |
-
n = uniform(min_n_box, max_n_box) # sample number of rectangles
|
127 |
-
|
128 |
-
for _ in range(n):
|
129 |
-
h = uniform(min_s_box, max_s_box) # sample box shape
|
130 |
-
w = uniform(min_s_box, max_s_box)
|
131 |
-
|
132 |
-
x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
|
133 |
-
y_0 = uniform(marg, img_h - marg - h)
|
134 |
-
|
135 |
-
if np.random.uniform(0, 1) < 0.5:
|
136 |
-
mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
|
137 |
-
else:
|
138 |
-
r = uniform(0, 60) # sample radius
|
139 |
-
mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
|
140 |
-
return mask
|
141 |
-
|
142 |
-
|
143 |
-
make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
|
144 |
-
make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
|
145 |
-
make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
|
146 |
-
make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
|
147 |
-
|
148 |
-
|
149 |
-
MASK_MODES = {
|
150 |
-
"256train": make_lama_mask,
|
151 |
-
"256narrow": make_narrow_lama_mask,
|
152 |
-
"512train": make_512_lama_mask,
|
153 |
-
"512train-large": make_512_lama_mask_large
|
154 |
-
}
|
155 |
-
|
156 |
-
if __name__ == "__main__":
|
157 |
-
import sys
|
158 |
-
|
159 |
-
out = sys.argv[1]
|
160 |
-
|
161 |
-
prng = np.random.RandomState(1)
|
162 |
-
kwargs = settings["256train"]
|
163 |
-
mask = gen_large_mask(prng, 256, 256, **kwargs)
|
164 |
-
mask = (255 * mask).astype(np.uint8)
|
165 |
-
mask = Image.fromarray(mask)
|
166 |
-
mask.save(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/laion.py
DELETED
@@ -1,537 +0,0 @@
|
|
1 |
-
import webdataset as wds
|
2 |
-
import kornia
|
3 |
-
from PIL import Image
|
4 |
-
import io
|
5 |
-
import os
|
6 |
-
import torchvision
|
7 |
-
from PIL import Image
|
8 |
-
import glob
|
9 |
-
import random
|
10 |
-
import numpy as np
|
11 |
-
import pytorch_lightning as pl
|
12 |
-
from tqdm import tqdm
|
13 |
-
from omegaconf import OmegaConf
|
14 |
-
from einops import rearrange
|
15 |
-
import torch
|
16 |
-
from webdataset.handlers import warn_and_continue
|
17 |
-
|
18 |
-
|
19 |
-
from ldm.util import instantiate_from_config
|
20 |
-
from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
|
21 |
-
from ldm.data.base import PRNGMixin
|
22 |
-
|
23 |
-
|
24 |
-
class DataWithWings(torch.utils.data.IterableDataset):
|
25 |
-
def __init__(self, min_size, transform=None, target_transform=None):
|
26 |
-
self.min_size = min_size
|
27 |
-
self.transform = transform if transform is not None else nn.Identity()
|
28 |
-
self.target_transform = target_transform if target_transform is not None else nn.Identity()
|
29 |
-
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
|
30 |
-
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
|
31 |
-
self.pwatermark_threshold = 0.8
|
32 |
-
self.punsafe_threshold = 0.5
|
33 |
-
self.aesthetic_threshold = 5.
|
34 |
-
self.total_samples = 0
|
35 |
-
self.samples = 0
|
36 |
-
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
|
37 |
-
|
38 |
-
self.inner_dataset = wds.DataPipeline(
|
39 |
-
wds.ResampledShards(location),
|
40 |
-
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
41 |
-
wds.shuffle(1000, handler=wds.warn_and_continue),
|
42 |
-
wds.decode('pilrgb', handler=wds.warn_and_continue),
|
43 |
-
wds.map(self._add_tags, handler=wds.ignore_and_continue),
|
44 |
-
wds.select(self._filter_predicate),
|
45 |
-
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
|
46 |
-
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
|
47 |
-
)
|
48 |
-
|
49 |
-
@staticmethod
|
50 |
-
def _compute_hash(url, text):
|
51 |
-
if url is None:
|
52 |
-
url = ''
|
53 |
-
if text is None:
|
54 |
-
text = ''
|
55 |
-
total = (url + text).encode('utf-8')
|
56 |
-
return mmh3.hash64(total)[0]
|
57 |
-
|
58 |
-
def _add_tags(self, x):
|
59 |
-
hsh = self._compute_hash(x['json']['url'], x['txt'])
|
60 |
-
pwatermark, punsafe = self.kv[hsh]
|
61 |
-
aesthetic = self.kv_aesthetic[hsh][0]
|
62 |
-
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
|
63 |
-
|
64 |
-
def _punsafe_to_class(self, punsafe):
|
65 |
-
return torch.tensor(punsafe >= self.punsafe_threshold).long()
|
66 |
-
|
67 |
-
def _filter_predicate(self, x):
|
68 |
-
try:
|
69 |
-
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
70 |
-
except:
|
71 |
-
return False
|
72 |
-
|
73 |
-
def __iter__(self):
|
74 |
-
return iter(self.inner_dataset)
|
75 |
-
|
76 |
-
|
77 |
-
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
78 |
-
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
79 |
-
If `tensors` is True, `ndarray` objects are combined into
|
80 |
-
tensor batches.
|
81 |
-
:param dict samples: list of samples
|
82 |
-
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
83 |
-
:returns: single sample consisting of a batch
|
84 |
-
:rtype: dict
|
85 |
-
"""
|
86 |
-
keys = set.intersection(*[set(sample.keys()) for sample in samples])
|
87 |
-
batched = {key: [] for key in keys}
|
88 |
-
|
89 |
-
for s in samples:
|
90 |
-
[batched[key].append(s[key]) for key in batched]
|
91 |
-
|
92 |
-
result = {}
|
93 |
-
for key in batched:
|
94 |
-
if isinstance(batched[key][0], (int, float)):
|
95 |
-
if combine_scalars:
|
96 |
-
result[key] = np.array(list(batched[key]))
|
97 |
-
elif isinstance(batched[key][0], torch.Tensor):
|
98 |
-
if combine_tensors:
|
99 |
-
result[key] = torch.stack(list(batched[key]))
|
100 |
-
elif isinstance(batched[key][0], np.ndarray):
|
101 |
-
if combine_tensors:
|
102 |
-
result[key] = np.array(list(batched[key]))
|
103 |
-
else:
|
104 |
-
result[key] = list(batched[key])
|
105 |
-
return result
|
106 |
-
|
107 |
-
|
108 |
-
class WebDataModuleFromConfig(pl.LightningDataModule):
|
109 |
-
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
110 |
-
test=None, num_workers=4, multinode=True, min_size=None,
|
111 |
-
max_pwatermark=1.0,
|
112 |
-
**kwargs):
|
113 |
-
super().__init__(self)
|
114 |
-
print(f'Setting tar base to {tar_base}')
|
115 |
-
self.tar_base = tar_base
|
116 |
-
self.batch_size = batch_size
|
117 |
-
self.num_workers = num_workers
|
118 |
-
self.train = train
|
119 |
-
self.validation = validation
|
120 |
-
self.test = test
|
121 |
-
self.multinode = multinode
|
122 |
-
self.min_size = min_size # filter out very small images
|
123 |
-
self.max_pwatermark = max_pwatermark # filter out watermarked images
|
124 |
-
|
125 |
-
def make_loader(self, dataset_config, train=True):
|
126 |
-
if 'image_transforms' in dataset_config:
|
127 |
-
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
128 |
-
else:
|
129 |
-
image_transforms = []
|
130 |
-
|
131 |
-
image_transforms.extend([torchvision.transforms.ToTensor(),
|
132 |
-
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
133 |
-
image_transforms = torchvision.transforms.Compose(image_transforms)
|
134 |
-
|
135 |
-
if 'transforms' in dataset_config:
|
136 |
-
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
137 |
-
else:
|
138 |
-
transforms_config = dict()
|
139 |
-
|
140 |
-
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
|
141 |
-
if transforms_config[dkey] != 'identity' else identity
|
142 |
-
for dkey in transforms_config}
|
143 |
-
img_key = dataset_config.get('image_key', 'jpeg')
|
144 |
-
transform_dict.update({img_key: image_transforms})
|
145 |
-
|
146 |
-
if 'postprocess' in dataset_config:
|
147 |
-
postprocess = instantiate_from_config(dataset_config['postprocess'])
|
148 |
-
else:
|
149 |
-
postprocess = None
|
150 |
-
|
151 |
-
shuffle = dataset_config.get('shuffle', 0)
|
152 |
-
shardshuffle = shuffle > 0
|
153 |
-
|
154 |
-
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
155 |
-
|
156 |
-
if self.tar_base == "__improvedaesthetic__":
|
157 |
-
print("## Warning, loading the same improved aesthetic dataset "
|
158 |
-
"for all splits and ignoring shards parameter.")
|
159 |
-
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
160 |
-
else:
|
161 |
-
tars = os.path.join(self.tar_base, dataset_config.shards)
|
162 |
-
|
163 |
-
dset = wds.WebDataset(
|
164 |
-
tars,
|
165 |
-
nodesplitter=nodesplitter,
|
166 |
-
shardshuffle=shardshuffle,
|
167 |
-
handler=wds.warn_and_continue).repeat().shuffle(shuffle)
|
168 |
-
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
|
169 |
-
|
170 |
-
dset = (dset
|
171 |
-
.select(self.filter_keys)
|
172 |
-
.decode('pil', handler=wds.warn_and_continue)
|
173 |
-
.select(self.filter_size)
|
174 |
-
.map_dict(**transform_dict, handler=wds.warn_and_continue)
|
175 |
-
)
|
176 |
-
if postprocess is not None:
|
177 |
-
dset = dset.map(postprocess)
|
178 |
-
dset = (dset
|
179 |
-
.batched(self.batch_size, partial=False,
|
180 |
-
collation_fn=dict_collation_fn)
|
181 |
-
)
|
182 |
-
|
183 |
-
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
184 |
-
num_workers=self.num_workers)
|
185 |
-
|
186 |
-
return loader
|
187 |
-
|
188 |
-
def filter_size(self, x):
|
189 |
-
try:
|
190 |
-
valid = True
|
191 |
-
if self.min_size is not None and self.min_size > 1:
|
192 |
-
try:
|
193 |
-
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
194 |
-
except Exception:
|
195 |
-
valid = False
|
196 |
-
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
|
197 |
-
try:
|
198 |
-
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
|
199 |
-
except Exception:
|
200 |
-
valid = False
|
201 |
-
return valid
|
202 |
-
except Exception:
|
203 |
-
return False
|
204 |
-
|
205 |
-
def filter_keys(self, x):
|
206 |
-
try:
|
207 |
-
return ("jpg" in x) and ("txt" in x)
|
208 |
-
except Exception:
|
209 |
-
return False
|
210 |
-
|
211 |
-
def train_dataloader(self):
|
212 |
-
return self.make_loader(self.train)
|
213 |
-
|
214 |
-
def val_dataloader(self):
|
215 |
-
return self.make_loader(self.validation, train=False)
|
216 |
-
|
217 |
-
def test_dataloader(self):
|
218 |
-
return self.make_loader(self.test, train=False)
|
219 |
-
|
220 |
-
|
221 |
-
from ldm.modules.image_degradation import degradation_fn_bsr_light
|
222 |
-
import cv2
|
223 |
-
|
224 |
-
class AddLR(object):
|
225 |
-
def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
|
226 |
-
self.factor = factor
|
227 |
-
self.output_size = output_size
|
228 |
-
self.image_key = image_key
|
229 |
-
self.initial_size = initial_size
|
230 |
-
|
231 |
-
def pt2np(self, x):
|
232 |
-
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
233 |
-
return x
|
234 |
-
|
235 |
-
def np2pt(self, x):
|
236 |
-
x = torch.from_numpy(x)/127.5-1.0
|
237 |
-
return x
|
238 |
-
|
239 |
-
def __call__(self, sample):
|
240 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
241 |
-
x = self.pt2np(sample[self.image_key])
|
242 |
-
if self.initial_size is not None:
|
243 |
-
x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
|
244 |
-
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
|
245 |
-
x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
|
246 |
-
x = self.np2pt(x)
|
247 |
-
sample['lr'] = x
|
248 |
-
return sample
|
249 |
-
|
250 |
-
class AddBW(object):
|
251 |
-
def __init__(self, image_key="jpg"):
|
252 |
-
self.image_key = image_key
|
253 |
-
|
254 |
-
def pt2np(self, x):
|
255 |
-
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
256 |
-
return x
|
257 |
-
|
258 |
-
def np2pt(self, x):
|
259 |
-
x = torch.from_numpy(x)/127.5-1.0
|
260 |
-
return x
|
261 |
-
|
262 |
-
def __call__(self, sample):
|
263 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
264 |
-
x = sample[self.image_key]
|
265 |
-
w = torch.rand(3, device=x.device)
|
266 |
-
w /= w.sum()
|
267 |
-
out = torch.einsum('hwc,c->hw', x, w)
|
268 |
-
|
269 |
-
# Keep as 3ch so we can pass to encoder, also we might want to add hints
|
270 |
-
sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
|
271 |
-
return sample
|
272 |
-
|
273 |
-
class AddMask(PRNGMixin):
|
274 |
-
def __init__(self, mode="512train", p_drop=0.):
|
275 |
-
super().__init__()
|
276 |
-
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
277 |
-
self.make_mask = MASK_MODES[mode]
|
278 |
-
self.p_drop = p_drop
|
279 |
-
|
280 |
-
def __call__(self, sample):
|
281 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
282 |
-
x = sample['jpg']
|
283 |
-
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
284 |
-
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
|
285 |
-
mask = np.ones_like(mask)
|
286 |
-
mask[mask < 0.5] = 0
|
287 |
-
mask[mask > 0.5] = 1
|
288 |
-
mask = torch.from_numpy(mask[..., None])
|
289 |
-
sample['mask'] = mask
|
290 |
-
sample['masked_image'] = x * (mask < 0.5)
|
291 |
-
return sample
|
292 |
-
|
293 |
-
|
294 |
-
class AddEdge(PRNGMixin):
|
295 |
-
def __init__(self, mode="512train", mask_edges=True):
|
296 |
-
super().__init__()
|
297 |
-
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
298 |
-
self.make_mask = MASK_MODES[mode]
|
299 |
-
self.n_down_choices = [0]
|
300 |
-
self.sigma_choices = [1, 2]
|
301 |
-
self.mask_edges = mask_edges
|
302 |
-
|
303 |
-
@torch.no_grad()
|
304 |
-
def __call__(self, sample):
|
305 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
306 |
-
x = sample['jpg']
|
307 |
-
|
308 |
-
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
309 |
-
mask[mask < 0.5] = 0
|
310 |
-
mask[mask > 0.5] = 1
|
311 |
-
mask = torch.from_numpy(mask[..., None])
|
312 |
-
sample['mask'] = mask
|
313 |
-
|
314 |
-
n_down_idx = self.prng.choice(len(self.n_down_choices))
|
315 |
-
sigma_idx = self.prng.choice(len(self.sigma_choices))
|
316 |
-
|
317 |
-
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
|
318 |
-
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
|
319 |
-
(len(self.n_down_choices), len(self.sigma_choices)))
|
320 |
-
normalized_idx = raveled_idx/max(1, n_choices-1)
|
321 |
-
|
322 |
-
n_down = self.n_down_choices[n_down_idx]
|
323 |
-
sigma = self.sigma_choices[sigma_idx]
|
324 |
-
|
325 |
-
kernel_size = 4*sigma+1
|
326 |
-
kernel_size = (kernel_size, kernel_size)
|
327 |
-
sigma = (sigma, sigma)
|
328 |
-
canny = kornia.filters.Canny(
|
329 |
-
low_threshold=0.1,
|
330 |
-
high_threshold=0.2,
|
331 |
-
kernel_size=kernel_size,
|
332 |
-
sigma=sigma,
|
333 |
-
hysteresis=True,
|
334 |
-
)
|
335 |
-
y = (x+1.0)/2.0 # in 01
|
336 |
-
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
|
337 |
-
|
338 |
-
# down
|
339 |
-
for i_down in range(n_down):
|
340 |
-
size = min(y.shape[-2], y.shape[-1])//2
|
341 |
-
y = kornia.geometry.transform.resize(y, size, antialias=True)
|
342 |
-
|
343 |
-
# edge
|
344 |
-
_, y = canny(y)
|
345 |
-
|
346 |
-
if n_down > 0:
|
347 |
-
size = x.shape[0], x.shape[1]
|
348 |
-
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
|
349 |
-
|
350 |
-
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
|
351 |
-
y = y*2.0-1.0
|
352 |
-
|
353 |
-
if self.mask_edges:
|
354 |
-
sample['masked_image'] = y * (mask < 0.5)
|
355 |
-
else:
|
356 |
-
sample['masked_image'] = y
|
357 |
-
sample['mask'] = torch.zeros_like(sample['mask'])
|
358 |
-
|
359 |
-
# concat normalized idx
|
360 |
-
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
|
361 |
-
|
362 |
-
return sample
|
363 |
-
|
364 |
-
|
365 |
-
def example00():
|
366 |
-
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
367 |
-
dataset = wds.WebDataset(url)
|
368 |
-
example = next(iter(dataset))
|
369 |
-
for k in example:
|
370 |
-
print(k, type(example[k]))
|
371 |
-
|
372 |
-
print(example["__key__"])
|
373 |
-
for k in ["json", "txt"]:
|
374 |
-
print(example[k].decode())
|
375 |
-
|
376 |
-
image = Image.open(io.BytesIO(example["jpg"]))
|
377 |
-
outdir = "tmp"
|
378 |
-
os.makedirs(outdir, exist_ok=True)
|
379 |
-
image.save(os.path.join(outdir, example["__key__"] + ".png"))
|
380 |
-
|
381 |
-
|
382 |
-
def load_example(example):
|
383 |
-
return {
|
384 |
-
"key": example["__key__"],
|
385 |
-
"image": Image.open(io.BytesIO(example["jpg"])),
|
386 |
-
"text": example["txt"].decode(),
|
387 |
-
}
|
388 |
-
|
389 |
-
|
390 |
-
for i, example in tqdm(enumerate(dataset)):
|
391 |
-
ex = load_example(example)
|
392 |
-
print(ex["image"].size, ex["text"])
|
393 |
-
if i >= 100:
|
394 |
-
break
|
395 |
-
|
396 |
-
|
397 |
-
def example01():
|
398 |
-
# the first laion shards contain ~10k examples each
|
399 |
-
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
|
400 |
-
|
401 |
-
batch_size = 3
|
402 |
-
shuffle_buffer = 10000
|
403 |
-
dset = wds.WebDataset(
|
404 |
-
url,
|
405 |
-
nodesplitter=wds.shardlists.split_by_node,
|
406 |
-
shardshuffle=True,
|
407 |
-
)
|
408 |
-
dset = (dset
|
409 |
-
.shuffle(shuffle_buffer, initial=shuffle_buffer)
|
410 |
-
.decode('pil', handler=warn_and_continue)
|
411 |
-
.batched(batch_size, partial=False,
|
412 |
-
collation_fn=dict_collation_fn)
|
413 |
-
)
|
414 |
-
|
415 |
-
num_workers = 2
|
416 |
-
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
|
417 |
-
|
418 |
-
batch_sizes = list()
|
419 |
-
keys_per_epoch = list()
|
420 |
-
for epoch in range(5):
|
421 |
-
keys = list()
|
422 |
-
for batch in tqdm(loader):
|
423 |
-
batch_sizes.append(len(batch["__key__"]))
|
424 |
-
keys.append(batch["__key__"])
|
425 |
-
|
426 |
-
for bs in batch_sizes:
|
427 |
-
assert bs==batch_size
|
428 |
-
print(f"{len(batch_sizes)} batches of size {batch_size}.")
|
429 |
-
batch_sizes = list()
|
430 |
-
|
431 |
-
keys_per_epoch.append(keys)
|
432 |
-
for i_batch in [0, 1, -1]:
|
433 |
-
print(f"Batch {i_batch} of epoch {epoch}:")
|
434 |
-
print(keys[i_batch])
|
435 |
-
print("next epoch.")
|
436 |
-
|
437 |
-
|
438 |
-
def example02():
|
439 |
-
from omegaconf import OmegaConf
|
440 |
-
from torch.utils.data.distributed import DistributedSampler
|
441 |
-
from torch.utils.data import IterableDataset
|
442 |
-
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
|
443 |
-
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
|
444 |
-
|
445 |
-
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
|
446 |
-
#config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
|
447 |
-
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
|
448 |
-
datamod = WebDataModuleFromConfig(**config["data"]["params"])
|
449 |
-
dataloader = datamod.train_dataloader()
|
450 |
-
|
451 |
-
for batch in dataloader:
|
452 |
-
print(batch.keys())
|
453 |
-
print(batch["jpg"].shape)
|
454 |
-
break
|
455 |
-
|
456 |
-
|
457 |
-
def example03():
|
458 |
-
# improved aesthetics
|
459 |
-
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
460 |
-
dataset = wds.WebDataset(tars)
|
461 |
-
|
462 |
-
def filter_keys(x):
|
463 |
-
try:
|
464 |
-
return ("jpg" in x) and ("txt" in x)
|
465 |
-
except Exception:
|
466 |
-
return False
|
467 |
-
|
468 |
-
def filter_size(x):
|
469 |
-
try:
|
470 |
-
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
471 |
-
except Exception:
|
472 |
-
return False
|
473 |
-
|
474 |
-
def filter_watermark(x):
|
475 |
-
try:
|
476 |
-
return x['json']['pwatermark'] < 0.5
|
477 |
-
except Exception:
|
478 |
-
return False
|
479 |
-
|
480 |
-
dataset = (dataset
|
481 |
-
.select(filter_keys)
|
482 |
-
.decode('pil', handler=wds.warn_and_continue))
|
483 |
-
n_save = 20
|
484 |
-
n_total = 0
|
485 |
-
n_large = 0
|
486 |
-
n_large_nowm = 0
|
487 |
-
for i, example in enumerate(dataset):
|
488 |
-
n_total += 1
|
489 |
-
if filter_size(example):
|
490 |
-
n_large += 1
|
491 |
-
if filter_watermark(example):
|
492 |
-
n_large_nowm += 1
|
493 |
-
if n_large_nowm < n_save+1:
|
494 |
-
image = example["jpg"]
|
495 |
-
image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
|
496 |
-
|
497 |
-
if i%500 == 0:
|
498 |
-
print(i)
|
499 |
-
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
|
500 |
-
if n_large > 0:
|
501 |
-
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
def example04():
|
506 |
-
# improved aesthetics
|
507 |
-
for i_shard in range(60208)[::-1]:
|
508 |
-
print(i_shard)
|
509 |
-
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
|
510 |
-
dataset = wds.WebDataset(tars)
|
511 |
-
|
512 |
-
def filter_keys(x):
|
513 |
-
try:
|
514 |
-
return ("jpg" in x) and ("txt" in x)
|
515 |
-
except Exception:
|
516 |
-
return False
|
517 |
-
|
518 |
-
def filter_size(x):
|
519 |
-
try:
|
520 |
-
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
521 |
-
except Exception:
|
522 |
-
return False
|
523 |
-
|
524 |
-
dataset = (dataset
|
525 |
-
.select(filter_keys)
|
526 |
-
.decode('pil', handler=wds.warn_and_continue))
|
527 |
-
try:
|
528 |
-
example = next(iter(dataset))
|
529 |
-
except Exception:
|
530 |
-
print(f"Error @ {i_shard}")
|
531 |
-
|
532 |
-
|
533 |
-
if __name__ == "__main__":
|
534 |
-
#example01()
|
535 |
-
#example02()
|
536 |
-
example03()
|
537 |
-
#example04()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/lsun.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import PIL
|
4 |
-
from PIL import Image
|
5 |
-
from torch.utils.data import Dataset
|
6 |
-
from torchvision import transforms
|
7 |
-
|
8 |
-
|
9 |
-
class LSUNBase(Dataset):
|
10 |
-
def __init__(self,
|
11 |
-
txt_file,
|
12 |
-
data_root,
|
13 |
-
size=None,
|
14 |
-
interpolation="bicubic",
|
15 |
-
flip_p=0.5
|
16 |
-
):
|
17 |
-
self.data_paths = txt_file
|
18 |
-
self.data_root = data_root
|
19 |
-
with open(self.data_paths, "r") as f:
|
20 |
-
self.image_paths = f.read().splitlines()
|
21 |
-
self._length = len(self.image_paths)
|
22 |
-
self.labels = {
|
23 |
-
"relative_file_path_": [l for l in self.image_paths],
|
24 |
-
"file_path_": [os.path.join(self.data_root, l)
|
25 |
-
for l in self.image_paths],
|
26 |
-
}
|
27 |
-
|
28 |
-
self.size = size
|
29 |
-
self.interpolation = {"linear": PIL.Image.LINEAR,
|
30 |
-
"bilinear": PIL.Image.BILINEAR,
|
31 |
-
"bicubic": PIL.Image.BICUBIC,
|
32 |
-
"lanczos": PIL.Image.LANCZOS,
|
33 |
-
}[interpolation]
|
34 |
-
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
35 |
-
|
36 |
-
def __len__(self):
|
37 |
-
return self._length
|
38 |
-
|
39 |
-
def __getitem__(self, i):
|
40 |
-
example = dict((k, self.labels[k][i]) for k in self.labels)
|
41 |
-
image = Image.open(example["file_path_"])
|
42 |
-
if not image.mode == "RGB":
|
43 |
-
image = image.convert("RGB")
|
44 |
-
|
45 |
-
# default to score-sde preprocessing
|
46 |
-
img = np.array(image).astype(np.uint8)
|
47 |
-
crop = min(img.shape[0], img.shape[1])
|
48 |
-
h, w, = img.shape[0], img.shape[1]
|
49 |
-
img = img[(h - crop) // 2:(h + crop) // 2,
|
50 |
-
(w - crop) // 2:(w + crop) // 2]
|
51 |
-
|
52 |
-
image = Image.fromarray(img)
|
53 |
-
if self.size is not None:
|
54 |
-
image = image.resize((self.size, self.size), resample=self.interpolation)
|
55 |
-
|
56 |
-
image = self.flip(image)
|
57 |
-
image = np.array(image).astype(np.uint8)
|
58 |
-
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
59 |
-
return example
|
60 |
-
|
61 |
-
|
62 |
-
class LSUNChurchesTrain(LSUNBase):
|
63 |
-
def __init__(self, **kwargs):
|
64 |
-
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
65 |
-
|
66 |
-
|
67 |
-
class LSUNChurchesValidation(LSUNBase):
|
68 |
-
def __init__(self, flip_p=0., **kwargs):
|
69 |
-
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
70 |
-
flip_p=flip_p, **kwargs)
|
71 |
-
|
72 |
-
|
73 |
-
class LSUNBedroomsTrain(LSUNBase):
|
74 |
-
def __init__(self, **kwargs):
|
75 |
-
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
76 |
-
|
77 |
-
|
78 |
-
class LSUNBedroomsValidation(LSUNBase):
|
79 |
-
def __init__(self, flip_p=0.0, **kwargs):
|
80 |
-
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
81 |
-
flip_p=flip_p, **kwargs)
|
82 |
-
|
83 |
-
|
84 |
-
class LSUNCatsTrain(LSUNBase):
|
85 |
-
def __init__(self, **kwargs):
|
86 |
-
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
87 |
-
|
88 |
-
|
89 |
-
class LSUNCatsValidation(LSUNBase):
|
90 |
-
def __init__(self, flip_p=0., **kwargs):
|
91 |
-
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
92 |
-
flip_p=flip_p, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/nerf_like.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
from torch.utils.data import Dataset
|
2 |
-
import os
|
3 |
-
import json
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import imageio
|
7 |
-
import math
|
8 |
-
import cv2
|
9 |
-
from torchvision import transforms
|
10 |
-
|
11 |
-
def cartesian_to_spherical(xyz):
|
12 |
-
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
13 |
-
xy = xyz[:,0]**2 + xyz[:,1]**2
|
14 |
-
z = np.sqrt(xy + xyz[:,2]**2)
|
15 |
-
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
16 |
-
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
17 |
-
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
18 |
-
return np.array([theta, azimuth, z])
|
19 |
-
|
20 |
-
|
21 |
-
def get_T(T_target, T_cond):
|
22 |
-
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
|
23 |
-
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
|
24 |
-
|
25 |
-
d_theta = theta_target - theta_cond
|
26 |
-
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
27 |
-
d_z = z_target - z_cond
|
28 |
-
|
29 |
-
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
30 |
-
return d_T
|
31 |
-
|
32 |
-
def get_spherical(T_target, T_cond):
|
33 |
-
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
|
34 |
-
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
|
35 |
-
|
36 |
-
d_theta = theta_target - theta_cond
|
37 |
-
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
38 |
-
d_z = z_target - z_cond
|
39 |
-
|
40 |
-
d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()])
|
41 |
-
return d_T
|
42 |
-
|
43 |
-
class RTMV(Dataset):
|
44 |
-
def __init__(self, root_dir='datasets/RTMV/google_scanned',\
|
45 |
-
first_K=64, resolution=256, load_target=False):
|
46 |
-
self.root_dir = root_dir
|
47 |
-
self.scene_list = sorted(next(os.walk(root_dir))[1])
|
48 |
-
self.resolution = resolution
|
49 |
-
self.first_K = first_K
|
50 |
-
self.load_target = load_target
|
51 |
-
|
52 |
-
def __len__(self):
|
53 |
-
return len(self.scene_list)
|
54 |
-
|
55 |
-
def __getitem__(self, idx):
|
56 |
-
scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
|
57 |
-
with open(os.path.join(scene_dir, 'transforms.json'), "r") as f:
|
58 |
-
meta = json.load(f)
|
59 |
-
imgs = []
|
60 |
-
poses = []
|
61 |
-
for i_img in range(self.first_K):
|
62 |
-
meta_img = meta['frames'][i_img]
|
63 |
-
|
64 |
-
if i_img == 0 or self.load_target:
|
65 |
-
img_path = os.path.join(scene_dir, meta_img['file_path'])
|
66 |
-
img = imageio.imread(img_path)
|
67 |
-
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
|
68 |
-
imgs.append(img)
|
69 |
-
|
70 |
-
c2w = meta_img['transform_matrix']
|
71 |
-
poses.append(c2w)
|
72 |
-
|
73 |
-
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
|
74 |
-
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
|
75 |
-
imgs = imgs * 2 - 1. # convert to stable diffusion range
|
76 |
-
poses = torch.tensor(np.array(poses).astype(np.float32))
|
77 |
-
return imgs, poses
|
78 |
-
|
79 |
-
def blend_rgba(self, img):
|
80 |
-
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
|
81 |
-
return img
|
82 |
-
|
83 |
-
|
84 |
-
class GSO(Dataset):
|
85 |
-
def __init__(self, root_dir='datasets/GoogleScannedObjects',\
|
86 |
-
split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'):
|
87 |
-
self.root_dir = root_dir
|
88 |
-
with open(os.path.join(root_dir, '%s.json' % split), "r") as f:
|
89 |
-
self.scene_list = json.load(f)
|
90 |
-
self.resolution = resolution
|
91 |
-
self.first_K = first_K
|
92 |
-
self.load_target = load_target
|
93 |
-
self.name = name
|
94 |
-
|
95 |
-
def __len__(self):
|
96 |
-
return len(self.scene_list)
|
97 |
-
|
98 |
-
def __getitem__(self, idx):
|
99 |
-
scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
|
100 |
-
with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f:
|
101 |
-
meta = json.load(f)
|
102 |
-
imgs = []
|
103 |
-
poses = []
|
104 |
-
for i_img in range(self.first_K):
|
105 |
-
meta_img = meta['frames'][i_img]
|
106 |
-
|
107 |
-
if i_img == 0 or self.load_target:
|
108 |
-
img_path = os.path.join(scene_dir, meta_img['file_path'])
|
109 |
-
img = imageio.imread(img_path)
|
110 |
-
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
|
111 |
-
imgs.append(img)
|
112 |
-
|
113 |
-
c2w = meta_img['transform_matrix']
|
114 |
-
poses.append(c2w)
|
115 |
-
|
116 |
-
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
|
117 |
-
mask = imgs[:, :, :, -1]
|
118 |
-
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
|
119 |
-
imgs = imgs * 2 - 1. # convert to stable diffusion range
|
120 |
-
poses = torch.tensor(np.array(poses).astype(np.float32))
|
121 |
-
return imgs, poses
|
122 |
-
|
123 |
-
def blend_rgba(self, img):
|
124 |
-
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
|
125 |
-
return img
|
126 |
-
|
127 |
-
class WILD(Dataset):
|
128 |
-
def __init__(self, root_dir='data/nerf_wild',\
|
129 |
-
first_K=33, resolution=256, load_target=False):
|
130 |
-
self.root_dir = root_dir
|
131 |
-
self.scene_list = sorted(next(os.walk(root_dir))[1])
|
132 |
-
self.resolution = resolution
|
133 |
-
self.first_K = first_K
|
134 |
-
self.load_target = load_target
|
135 |
-
|
136 |
-
def __len__(self):
|
137 |
-
return len(self.scene_list)
|
138 |
-
|
139 |
-
def __getitem__(self, idx):
|
140 |
-
scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
|
141 |
-
with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f:
|
142 |
-
meta = json.load(f)
|
143 |
-
imgs = []
|
144 |
-
poses = []
|
145 |
-
for i_img in range(self.first_K):
|
146 |
-
meta_img = meta['frames'][i_img]
|
147 |
-
|
148 |
-
if i_img == 0 or self.load_target:
|
149 |
-
img_path = os.path.join(scene_dir, meta_img['file_path'])
|
150 |
-
img = imageio.imread(img_path + '.png')
|
151 |
-
img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
|
152 |
-
imgs.append(img)
|
153 |
-
|
154 |
-
c2w = meta_img['transform_matrix']
|
155 |
-
poses.append(c2w)
|
156 |
-
|
157 |
-
imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
|
158 |
-
imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
|
159 |
-
imgs = imgs * 2 - 1. # convert to stable diffusion range
|
160 |
-
poses = torch.tensor(np.array(poses).astype(np.float32))
|
161 |
-
return imgs, poses
|
162 |
-
|
163 |
-
def blend_rgba(self, img):
|
164 |
-
img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
|
165 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/data/simple.py
DELETED
@@ -1,526 +0,0 @@
|
|
1 |
-
from typing import Dict
|
2 |
-
import webdataset as wds
|
3 |
-
import numpy as np
|
4 |
-
from omegaconf import DictConfig, ListConfig
|
5 |
-
import torch
|
6 |
-
from torch.utils.data import Dataset
|
7 |
-
from pathlib import Path
|
8 |
-
import json
|
9 |
-
from PIL import Image
|
10 |
-
from torchvision import transforms
|
11 |
-
import torchvision
|
12 |
-
from einops import rearrange
|
13 |
-
from ldm.util import instantiate_from_config
|
14 |
-
from datasets import load_dataset
|
15 |
-
import pytorch_lightning as pl
|
16 |
-
import copy
|
17 |
-
import csv
|
18 |
-
import cv2
|
19 |
-
import random
|
20 |
-
import matplotlib.pyplot as plt
|
21 |
-
from torch.utils.data import DataLoader
|
22 |
-
import json
|
23 |
-
import os, sys
|
24 |
-
import webdataset as wds
|
25 |
-
import math
|
26 |
-
from torch.utils.data.distributed import DistributedSampler
|
27 |
-
|
28 |
-
# Some hacky things to make experimentation easier
|
29 |
-
def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
|
30 |
-
ds = make_multi_folder_data(paths, caption_files, **kwargs)
|
31 |
-
return TransformDataset(ds)
|
32 |
-
|
33 |
-
def make_nfp_data(base_path):
|
34 |
-
dirs = list(Path(base_path).glob("*/"))
|
35 |
-
print(f"Found {len(dirs)} folders")
|
36 |
-
print(dirs)
|
37 |
-
tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
|
38 |
-
datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
|
39 |
-
return torch.utils.data.ConcatDataset(datasets)
|
40 |
-
|
41 |
-
|
42 |
-
class VideoDataset(Dataset):
|
43 |
-
def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
|
44 |
-
self.root_dir = Path(root_dir)
|
45 |
-
self.caption_file = caption_file
|
46 |
-
self.n = n
|
47 |
-
ext = "mp4"
|
48 |
-
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
|
49 |
-
self.offset = offset
|
50 |
-
|
51 |
-
if isinstance(image_transforms, ListConfig):
|
52 |
-
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
53 |
-
image_transforms.extend([transforms.ToTensor(),
|
54 |
-
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
55 |
-
image_transforms = transforms.Compose(image_transforms)
|
56 |
-
self.tform = image_transforms
|
57 |
-
with open(self.caption_file) as f:
|
58 |
-
reader = csv.reader(f)
|
59 |
-
rows = [row for row in reader]
|
60 |
-
self.captions = dict(rows)
|
61 |
-
|
62 |
-
def __len__(self):
|
63 |
-
return len(self.paths)
|
64 |
-
|
65 |
-
def __getitem__(self, index):
|
66 |
-
for i in range(10):
|
67 |
-
try:
|
68 |
-
return self._load_sample(index)
|
69 |
-
except Exception:
|
70 |
-
# Not really good enough but...
|
71 |
-
print("uh oh")
|
72 |
-
|
73 |
-
def _load_sample(self, index):
|
74 |
-
n = self.n
|
75 |
-
filename = self.paths[index]
|
76 |
-
min_frame = 2*self.offset + 2
|
77 |
-
vid = cv2.VideoCapture(str(filename))
|
78 |
-
max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
79 |
-
curr_frame_n = random.randint(min_frame, max_frames)
|
80 |
-
vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
|
81 |
-
_, curr_frame = vid.read()
|
82 |
-
|
83 |
-
prev_frames = []
|
84 |
-
for i in range(n):
|
85 |
-
prev_frame_n = curr_frame_n - (i+1)*self.offset
|
86 |
-
vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
|
87 |
-
_, prev_frame = vid.read()
|
88 |
-
prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
|
89 |
-
prev_frames.append(prev_frame)
|
90 |
-
|
91 |
-
vid.release()
|
92 |
-
caption = self.captions[filename.name]
|
93 |
-
data = {
|
94 |
-
"image": self.tform(Image.fromarray(curr_frame[...,::-1])),
|
95 |
-
"prev": torch.cat(prev_frames, dim=-1),
|
96 |
-
"txt": caption
|
97 |
-
}
|
98 |
-
return data
|
99 |
-
|
100 |
-
# end hacky things
|
101 |
-
|
102 |
-
|
103 |
-
def make_tranforms(image_transforms):
|
104 |
-
# if isinstance(image_transforms, ListConfig):
|
105 |
-
# image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
106 |
-
image_transforms = []
|
107 |
-
image_transforms.extend([transforms.ToTensor(),
|
108 |
-
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
109 |
-
image_transforms = transforms.Compose(image_transforms)
|
110 |
-
return image_transforms
|
111 |
-
|
112 |
-
|
113 |
-
def make_multi_folder_data(paths, caption_files=None, **kwargs):
|
114 |
-
"""Make a concat dataset from multiple folders
|
115 |
-
Don't suport captions yet
|
116 |
-
|
117 |
-
If paths is a list, that's ok, if it's a Dict interpret it as:
|
118 |
-
k=folder v=n_times to repeat that
|
119 |
-
"""
|
120 |
-
list_of_paths = []
|
121 |
-
if isinstance(paths, (Dict, DictConfig)):
|
122 |
-
assert caption_files is None, \
|
123 |
-
"Caption files not yet supported for repeats"
|
124 |
-
for folder_path, repeats in paths.items():
|
125 |
-
list_of_paths.extend([folder_path]*repeats)
|
126 |
-
paths = list_of_paths
|
127 |
-
|
128 |
-
if caption_files is not None:
|
129 |
-
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
|
130 |
-
else:
|
131 |
-
datasets = [FolderData(p, **kwargs) for p in paths]
|
132 |
-
return torch.utils.data.ConcatDataset(datasets)
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
class NfpDataset(Dataset):
|
137 |
-
def __init__(self,
|
138 |
-
root_dir,
|
139 |
-
image_transforms=[],
|
140 |
-
ext="jpg",
|
141 |
-
default_caption="",
|
142 |
-
) -> None:
|
143 |
-
"""assume sequential frames and a deterministic transform"""
|
144 |
-
|
145 |
-
self.root_dir = Path(root_dir)
|
146 |
-
self.default_caption = default_caption
|
147 |
-
|
148 |
-
self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
|
149 |
-
self.tform = make_tranforms(image_transforms)
|
150 |
-
|
151 |
-
def __len__(self):
|
152 |
-
return len(self.paths) - 1
|
153 |
-
|
154 |
-
|
155 |
-
def __getitem__(self, index):
|
156 |
-
prev = self.paths[index]
|
157 |
-
curr = self.paths[index+1]
|
158 |
-
data = {}
|
159 |
-
data["image"] = self._load_im(curr)
|
160 |
-
data["prev"] = self._load_im(prev)
|
161 |
-
data["txt"] = self.default_caption
|
162 |
-
return data
|
163 |
-
|
164 |
-
def _load_im(self, filename):
|
165 |
-
im = Image.open(filename).convert("RGB")
|
166 |
-
return self.tform(im)
|
167 |
-
|
168 |
-
class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
|
169 |
-
def __init__(self, root_dir, batch_size, total_view, train=None, validation=None,
|
170 |
-
test=None, num_workers=4, **kwargs):
|
171 |
-
super().__init__(self)
|
172 |
-
self.root_dir = root_dir
|
173 |
-
self.batch_size = batch_size
|
174 |
-
self.num_workers = num_workers
|
175 |
-
self.total_view = total_view
|
176 |
-
|
177 |
-
if train is not None:
|
178 |
-
dataset_config = train
|
179 |
-
if validation is not None:
|
180 |
-
dataset_config = validation
|
181 |
-
|
182 |
-
if 'image_transforms' in dataset_config:
|
183 |
-
image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)]
|
184 |
-
else:
|
185 |
-
image_transforms = []
|
186 |
-
image_transforms.extend([transforms.ToTensor(),
|
187 |
-
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
188 |
-
self.image_transforms = torchvision.transforms.Compose(image_transforms)
|
189 |
-
|
190 |
-
|
191 |
-
def train_dataloader(self):
|
192 |
-
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \
|
193 |
-
image_transforms=self.image_transforms)
|
194 |
-
sampler = DistributedSampler(dataset)
|
195 |
-
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
|
196 |
-
|
197 |
-
def val_dataloader(self):
|
198 |
-
dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \
|
199 |
-
image_transforms=self.image_transforms)
|
200 |
-
sampler = DistributedSampler(dataset)
|
201 |
-
return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
|
202 |
-
|
203 |
-
def test_dataloader(self):
|
204 |
-
return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\
|
205 |
-
batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
|
206 |
-
|
207 |
-
|
208 |
-
class ObjaverseData(Dataset):
|
209 |
-
def __init__(self,
|
210 |
-
root_dir='.objaverse/hf-objaverse-v1/views',
|
211 |
-
image_transforms=[],
|
212 |
-
ext="png",
|
213 |
-
default_trans=torch.zeros(3),
|
214 |
-
postprocess=None,
|
215 |
-
return_paths=False,
|
216 |
-
total_view=4,
|
217 |
-
validation=False
|
218 |
-
) -> None:
|
219 |
-
"""Create a dataset from a folder of images.
|
220 |
-
If you pass in a root directory it will be searched for images
|
221 |
-
ending in ext (ext can be a list)
|
222 |
-
"""
|
223 |
-
self.root_dir = Path(root_dir)
|
224 |
-
self.default_trans = default_trans
|
225 |
-
self.return_paths = return_paths
|
226 |
-
if isinstance(postprocess, DictConfig):
|
227 |
-
postprocess = instantiate_from_config(postprocess)
|
228 |
-
self.postprocess = postprocess
|
229 |
-
self.total_view = total_view
|
230 |
-
|
231 |
-
if not isinstance(ext, (tuple, list, ListConfig)):
|
232 |
-
ext = [ext]
|
233 |
-
|
234 |
-
with open(os.path.join(root_dir, 'valid_paths.json')) as f:
|
235 |
-
self.paths = json.load(f)
|
236 |
-
|
237 |
-
total_objects = len(self.paths)
|
238 |
-
if validation:
|
239 |
-
self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
|
240 |
-
else:
|
241 |
-
self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
|
242 |
-
print('============= length of dataset %d =============' % len(self.paths))
|
243 |
-
self.tform = image_transforms
|
244 |
-
|
245 |
-
def __len__(self):
|
246 |
-
return len(self.paths)
|
247 |
-
|
248 |
-
def cartesian_to_spherical(self, xyz):
|
249 |
-
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
|
250 |
-
xy = xyz[:,0]**2 + xyz[:,1]**2
|
251 |
-
z = np.sqrt(xy + xyz[:,2]**2)
|
252 |
-
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
|
253 |
-
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
|
254 |
-
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
|
255 |
-
return np.array([theta, azimuth, z])
|
256 |
-
|
257 |
-
def get_T(self, target_RT, cond_RT):
|
258 |
-
R, T = target_RT[:3, :3], target_RT[:, -1]
|
259 |
-
T_target = -R.T @ T
|
260 |
-
|
261 |
-
R, T = cond_RT[:3, :3], cond_RT[:, -1]
|
262 |
-
T_cond = -R.T @ T
|
263 |
-
|
264 |
-
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
|
265 |
-
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
|
266 |
-
|
267 |
-
d_theta = theta_target - theta_cond
|
268 |
-
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
|
269 |
-
d_z = z_target - z_cond
|
270 |
-
|
271 |
-
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
|
272 |
-
return d_T
|
273 |
-
|
274 |
-
def load_im(self, path, color):
|
275 |
-
'''
|
276 |
-
replace background pixel with random color in rendering
|
277 |
-
'''
|
278 |
-
try:
|
279 |
-
img = plt.imread(path)
|
280 |
-
except:
|
281 |
-
print(path)
|
282 |
-
sys.exit()
|
283 |
-
img[img[:, :, -1] == 0.] = color
|
284 |
-
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
|
285 |
-
return img
|
286 |
-
|
287 |
-
def __getitem__(self, index):
|
288 |
-
|
289 |
-
data = {}
|
290 |
-
if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice
|
291 |
-
total_view = 8
|
292 |
-
else:
|
293 |
-
total_view = 4
|
294 |
-
index_target, index_cond = random.sample(range(total_view), 2) # without replacement
|
295 |
-
filename = os.path.join(self.root_dir, self.paths[index])
|
296 |
-
|
297 |
-
# print(self.paths[index])
|
298 |
-
|
299 |
-
if self.return_paths:
|
300 |
-
data["path"] = str(filename)
|
301 |
-
|
302 |
-
color = [1., 1., 1., 1.]
|
303 |
-
|
304 |
-
try:
|
305 |
-
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
|
306 |
-
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
|
307 |
-
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
|
308 |
-
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
|
309 |
-
except:
|
310 |
-
# very hacky solution, sorry about this
|
311 |
-
filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid
|
312 |
-
target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
|
313 |
-
cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
|
314 |
-
target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
|
315 |
-
cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
|
316 |
-
target_im = torch.zeros_like(target_im)
|
317 |
-
cond_im = torch.zeros_like(cond_im)
|
318 |
-
|
319 |
-
data["image_target"] = target_im
|
320 |
-
data["image_cond"] = cond_im
|
321 |
-
data["T"] = self.get_T(target_RT, cond_RT)
|
322 |
-
|
323 |
-
if self.postprocess is not None:
|
324 |
-
data = self.postprocess(data)
|
325 |
-
|
326 |
-
return data
|
327 |
-
|
328 |
-
def process_im(self, im):
|
329 |
-
im = im.convert("RGB")
|
330 |
-
return self.tform(im)
|
331 |
-
|
332 |
-
class FolderData(Dataset):
|
333 |
-
def __init__(self,
|
334 |
-
root_dir,
|
335 |
-
caption_file=None,
|
336 |
-
image_transforms=[],
|
337 |
-
ext="jpg",
|
338 |
-
default_caption="",
|
339 |
-
postprocess=None,
|
340 |
-
return_paths=False,
|
341 |
-
) -> None:
|
342 |
-
"""Create a dataset from a folder of images.
|
343 |
-
If you pass in a root directory it will be searched for images
|
344 |
-
ending in ext (ext can be a list)
|
345 |
-
"""
|
346 |
-
self.root_dir = Path(root_dir)
|
347 |
-
self.default_caption = default_caption
|
348 |
-
self.return_paths = return_paths
|
349 |
-
if isinstance(postprocess, DictConfig):
|
350 |
-
postprocess = instantiate_from_config(postprocess)
|
351 |
-
self.postprocess = postprocess
|
352 |
-
if caption_file is not None:
|
353 |
-
with open(caption_file, "rt") as f:
|
354 |
-
ext = Path(caption_file).suffix.lower()
|
355 |
-
if ext == ".json":
|
356 |
-
captions = json.load(f)
|
357 |
-
elif ext == ".jsonl":
|
358 |
-
lines = f.readlines()
|
359 |
-
lines = [json.loads(x) for x in lines]
|
360 |
-
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
|
361 |
-
else:
|
362 |
-
raise ValueError(f"Unrecognised format: {ext}")
|
363 |
-
self.captions = captions
|
364 |
-
else:
|
365 |
-
self.captions = None
|
366 |
-
|
367 |
-
if not isinstance(ext, (tuple, list, ListConfig)):
|
368 |
-
ext = [ext]
|
369 |
-
|
370 |
-
# Only used if there is no caption file
|
371 |
-
self.paths = []
|
372 |
-
for e in ext:
|
373 |
-
self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
|
374 |
-
self.tform = make_tranforms(image_transforms)
|
375 |
-
|
376 |
-
def __len__(self):
|
377 |
-
if self.captions is not None:
|
378 |
-
return len(self.captions.keys())
|
379 |
-
else:
|
380 |
-
return len(self.paths)
|
381 |
-
|
382 |
-
def __getitem__(self, index):
|
383 |
-
data = {}
|
384 |
-
if self.captions is not None:
|
385 |
-
chosen = list(self.captions.keys())[index]
|
386 |
-
caption = self.captions.get(chosen, None)
|
387 |
-
if caption is None:
|
388 |
-
caption = self.default_caption
|
389 |
-
filename = self.root_dir/chosen
|
390 |
-
else:
|
391 |
-
filename = self.paths[index]
|
392 |
-
|
393 |
-
if self.return_paths:
|
394 |
-
data["path"] = str(filename)
|
395 |
-
|
396 |
-
im = Image.open(filename).convert("RGB")
|
397 |
-
im = self.process_im(im)
|
398 |
-
data["image"] = im
|
399 |
-
|
400 |
-
if self.captions is not None:
|
401 |
-
data["txt"] = caption
|
402 |
-
else:
|
403 |
-
data["txt"] = self.default_caption
|
404 |
-
|
405 |
-
if self.postprocess is not None:
|
406 |
-
data = self.postprocess(data)
|
407 |
-
|
408 |
-
return data
|
409 |
-
|
410 |
-
def process_im(self, im):
|
411 |
-
im = im.convert("RGB")
|
412 |
-
return self.tform(im)
|
413 |
-
import random
|
414 |
-
|
415 |
-
class TransformDataset():
|
416 |
-
def __init__(self, ds, extra_label="sksbspic"):
|
417 |
-
self.ds = ds
|
418 |
-
self.extra_label = extra_label
|
419 |
-
self.transforms = {
|
420 |
-
"align": transforms.Resize(768),
|
421 |
-
"centerzoom": transforms.CenterCrop(768),
|
422 |
-
"randzoom": transforms.RandomCrop(768),
|
423 |
-
}
|
424 |
-
|
425 |
-
|
426 |
-
def __getitem__(self, index):
|
427 |
-
data = self.ds[index]
|
428 |
-
|
429 |
-
im = data['image']
|
430 |
-
im = im.permute(2,0,1)
|
431 |
-
# In case data is smaller than expected
|
432 |
-
im = transforms.Resize(1024)(im)
|
433 |
-
|
434 |
-
tform_name = random.choice(list(self.transforms.keys()))
|
435 |
-
im = self.transforms[tform_name](im)
|
436 |
-
|
437 |
-
im = im.permute(1,2,0)
|
438 |
-
|
439 |
-
data['image'] = im
|
440 |
-
data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
|
441 |
-
|
442 |
-
return data
|
443 |
-
|
444 |
-
def __len__(self):
|
445 |
-
return len(self.ds)
|
446 |
-
|
447 |
-
def hf_dataset(
|
448 |
-
name,
|
449 |
-
image_transforms=[],
|
450 |
-
image_column="image",
|
451 |
-
text_column="text",
|
452 |
-
split='train',
|
453 |
-
image_key='image',
|
454 |
-
caption_key='txt',
|
455 |
-
):
|
456 |
-
"""Make huggingface dataset with appropriate list of transforms applied
|
457 |
-
"""
|
458 |
-
ds = load_dataset(name, split=split)
|
459 |
-
tform = make_tranforms(image_transforms)
|
460 |
-
|
461 |
-
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
|
462 |
-
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
|
463 |
-
|
464 |
-
def pre_process(examples):
|
465 |
-
processed = {}
|
466 |
-
processed[image_key] = [tform(im) for im in examples[image_column]]
|
467 |
-
processed[caption_key] = examples[text_column]
|
468 |
-
return processed
|
469 |
-
|
470 |
-
ds.set_transform(pre_process)
|
471 |
-
return ds
|
472 |
-
|
473 |
-
class TextOnly(Dataset):
|
474 |
-
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
|
475 |
-
"""Returns only captions with dummy images"""
|
476 |
-
self.output_size = output_size
|
477 |
-
self.image_key = image_key
|
478 |
-
self.caption_key = caption_key
|
479 |
-
if isinstance(captions, Path):
|
480 |
-
self.captions = self._load_caption_file(captions)
|
481 |
-
else:
|
482 |
-
self.captions = captions
|
483 |
-
|
484 |
-
if n_gpus > 1:
|
485 |
-
# hack to make sure that all the captions appear on each gpu
|
486 |
-
repeated = [n_gpus*[x] for x in self.captions]
|
487 |
-
self.captions = []
|
488 |
-
[self.captions.extend(x) for x in repeated]
|
489 |
-
|
490 |
-
def __len__(self):
|
491 |
-
return len(self.captions)
|
492 |
-
|
493 |
-
def __getitem__(self, index):
|
494 |
-
dummy_im = torch.zeros(3, self.output_size, self.output_size)
|
495 |
-
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
|
496 |
-
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
|
497 |
-
|
498 |
-
def _load_caption_file(self, filename):
|
499 |
-
with open(filename, 'rt') as f:
|
500 |
-
captions = f.readlines()
|
501 |
-
return [x.strip('\n') for x in captions]
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
import random
|
506 |
-
import json
|
507 |
-
class IdRetreivalDataset(FolderData):
|
508 |
-
def __init__(self, ret_file, *args, **kwargs):
|
509 |
-
super().__init__(*args, **kwargs)
|
510 |
-
with open(ret_file, "rt") as f:
|
511 |
-
self.ret = json.load(f)
|
512 |
-
|
513 |
-
def __getitem__(self, index):
|
514 |
-
data = super().__getitem__(index)
|
515 |
-
key = self.paths[index].name
|
516 |
-
matches = self.ret[key]
|
517 |
-
if len(matches) > 0:
|
518 |
-
retreived = random.choice(matches)
|
519 |
-
else:
|
520 |
-
retreived = key
|
521 |
-
filename = self.root_dir/retreived
|
522 |
-
im = Image.open(filename).convert("RGB")
|
523 |
-
im = self.process_im(im)
|
524 |
-
# data["match"] = im
|
525 |
-
data["match"] = torch.cat((data["image"], im), dim=-1)
|
526 |
-
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/extras.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from omegaconf import OmegaConf
|
3 |
-
import torch
|
4 |
-
from ldm.util import instantiate_from_config
|
5 |
-
import logging
|
6 |
-
from contextlib import contextmanager
|
7 |
-
|
8 |
-
from contextlib import contextmanager
|
9 |
-
import logging
|
10 |
-
|
11 |
-
@contextmanager
|
12 |
-
def all_logging_disabled(highest_level=logging.CRITICAL):
|
13 |
-
"""
|
14 |
-
A context manager that will prevent any logging messages
|
15 |
-
triggered during the body from being processed.
|
16 |
-
|
17 |
-
:param highest_level: the maximum logging level in use.
|
18 |
-
This would only need to be changed if a custom level greater than CRITICAL
|
19 |
-
is defined.
|
20 |
-
|
21 |
-
https://gist.github.com/simon-weber/7853144
|
22 |
-
"""
|
23 |
-
# two kind-of hacks here:
|
24 |
-
# * can't get the highest logging level in effect => delegate to the user
|
25 |
-
# * can't get the current module-level override => use an undocumented
|
26 |
-
# (but non-private!) interface
|
27 |
-
|
28 |
-
previous_level = logging.root.manager.disable
|
29 |
-
|
30 |
-
logging.disable(highest_level)
|
31 |
-
|
32 |
-
try:
|
33 |
-
yield
|
34 |
-
finally:
|
35 |
-
logging.disable(previous_level)
|
36 |
-
|
37 |
-
def load_training_dir(train_dir, device, epoch="last"):
|
38 |
-
"""Load a checkpoint and config from training directory"""
|
39 |
-
train_dir = Path(train_dir)
|
40 |
-
ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
|
41 |
-
assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
|
42 |
-
config = list(train_dir.rglob(f"*-project.yaml"))
|
43 |
-
assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
|
44 |
-
if len(config) > 1:
|
45 |
-
print(f"found {len(config)} matching config files")
|
46 |
-
config = sorted(config)[-1]
|
47 |
-
print(f"selecting {config}")
|
48 |
-
else:
|
49 |
-
config = config[0]
|
50 |
-
|
51 |
-
|
52 |
-
config = OmegaConf.load(config)
|
53 |
-
return load_model_from_config(config, ckpt[0], device)
|
54 |
-
|
55 |
-
def load_model_from_config(config, ckpt, device="cpu", verbose=False):
|
56 |
-
"""Loads a model from config and a ckpt
|
57 |
-
if config is a path will use omegaconf to load
|
58 |
-
"""
|
59 |
-
if isinstance(config, (str, Path)):
|
60 |
-
config = OmegaConf.load(config)
|
61 |
-
|
62 |
-
with all_logging_disabled():
|
63 |
-
print(f"Loading model from {ckpt}")
|
64 |
-
pl_sd = torch.load(ckpt, map_location="cpu")
|
65 |
-
global_step = pl_sd["global_step"]
|
66 |
-
sd = pl_sd["state_dict"]
|
67 |
-
model = instantiate_from_config(config.model)
|
68 |
-
m, u = model.load_state_dict(sd, strict=False)
|
69 |
-
if len(m) > 0 and verbose:
|
70 |
-
print("missing keys:")
|
71 |
-
print(m)
|
72 |
-
if len(u) > 0 and verbose:
|
73 |
-
print("unexpected keys:")
|
74 |
-
model.to(device)
|
75 |
-
model.eval()
|
76 |
-
model.cond_stage_model.device = device
|
77 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/guidance.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
from typing import List, Tuple
|
2 |
-
from scipy import interpolate
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from IPython.display import clear_output
|
7 |
-
import abc
|
8 |
-
|
9 |
-
|
10 |
-
class GuideModel(torch.nn.Module, abc.ABC):
|
11 |
-
def __init__(self) -> None:
|
12 |
-
super().__init__()
|
13 |
-
|
14 |
-
@abc.abstractmethod
|
15 |
-
def preprocess(self, x_img):
|
16 |
-
pass
|
17 |
-
|
18 |
-
@abc.abstractmethod
|
19 |
-
def compute_loss(self, inp):
|
20 |
-
pass
|
21 |
-
|
22 |
-
|
23 |
-
class Guider(torch.nn.Module):
|
24 |
-
def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
|
25 |
-
"""Apply classifier guidance
|
26 |
-
|
27 |
-
Specify a guidance scale as either a scalar
|
28 |
-
Or a schedule as a list of tuples t = 0->1 and scale, e.g.
|
29 |
-
[(0, 10), (0.5, 20), (1, 50)]
|
30 |
-
"""
|
31 |
-
super().__init__()
|
32 |
-
self.sampler = sampler
|
33 |
-
self.index = 0
|
34 |
-
self.show = verbose
|
35 |
-
self.guide_model = guide_model
|
36 |
-
self.history = []
|
37 |
-
|
38 |
-
if isinstance(scale, (Tuple, List)):
|
39 |
-
times = np.array([x[0] for x in scale])
|
40 |
-
values = np.array([x[1] for x in scale])
|
41 |
-
self.scale_schedule = {"times": times, "values": values}
|
42 |
-
else:
|
43 |
-
self.scale_schedule = float(scale)
|
44 |
-
|
45 |
-
self.ddim_timesteps = sampler.ddim_timesteps
|
46 |
-
self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
|
47 |
-
|
48 |
-
|
49 |
-
def get_scales(self):
|
50 |
-
if isinstance(self.scale_schedule, float):
|
51 |
-
return len(self.ddim_timesteps)*[self.scale_schedule]
|
52 |
-
|
53 |
-
interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
|
54 |
-
fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
|
55 |
-
return interpolater(fractional_steps)
|
56 |
-
|
57 |
-
def modify_score(self, model, e_t, x, t, c):
|
58 |
-
|
59 |
-
# TODO look up index by t
|
60 |
-
scale = self.get_scales()[self.index]
|
61 |
-
|
62 |
-
if (scale == 0):
|
63 |
-
return e_t
|
64 |
-
|
65 |
-
sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
|
66 |
-
with torch.enable_grad():
|
67 |
-
x_in = x.detach().requires_grad_(True)
|
68 |
-
pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
|
69 |
-
x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
|
70 |
-
|
71 |
-
inp = self.guide_model.preprocess(x_img)
|
72 |
-
loss = self.guide_model.compute_loss(inp)
|
73 |
-
grads = torch.autograd.grad(loss.sum(), x_in)[0]
|
74 |
-
correction = grads * scale
|
75 |
-
|
76 |
-
if self.show:
|
77 |
-
clear_output(wait=True)
|
78 |
-
print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
|
79 |
-
self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
|
80 |
-
plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
|
81 |
-
plt.axis('off')
|
82 |
-
plt.show()
|
83 |
-
plt.imshow(correction[0][0].detach().cpu())
|
84 |
-
plt.axis('off')
|
85 |
-
plt.show()
|
86 |
-
|
87 |
-
|
88 |
-
e_t_mod = e_t - sqrt_1ma*correction
|
89 |
-
if self.show:
|
90 |
-
fig, axs = plt.subplots(1, 3)
|
91 |
-
axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
92 |
-
axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
93 |
-
axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
94 |
-
plt.show()
|
95 |
-
self.index += 1
|
96 |
-
return e_t_mod
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/lr_scheduler.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
|
4 |
-
class LambdaWarmUpCosineScheduler:
|
5 |
-
"""
|
6 |
-
note: use with a base_lr of 1.0
|
7 |
-
"""
|
8 |
-
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
-
self.lr_warm_up_steps = warm_up_steps
|
10 |
-
self.lr_start = lr_start
|
11 |
-
self.lr_min = lr_min
|
12 |
-
self.lr_max = lr_max
|
13 |
-
self.lr_max_decay_steps = max_decay_steps
|
14 |
-
self.last_lr = 0.
|
15 |
-
self.verbosity_interval = verbosity_interval
|
16 |
-
|
17 |
-
def schedule(self, n, **kwargs):
|
18 |
-
if self.verbosity_interval > 0:
|
19 |
-
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
-
if n < self.lr_warm_up_steps:
|
21 |
-
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
-
self.last_lr = lr
|
23 |
-
return lr
|
24 |
-
else:
|
25 |
-
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
-
t = min(t, 1.0)
|
27 |
-
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
-
1 + np.cos(t * np.pi))
|
29 |
-
self.last_lr = lr
|
30 |
-
return lr
|
31 |
-
|
32 |
-
def __call__(self, n, **kwargs):
|
33 |
-
return self.schedule(n,**kwargs)
|
34 |
-
|
35 |
-
|
36 |
-
class LambdaWarmUpCosineScheduler2:
|
37 |
-
"""
|
38 |
-
supports repeated iterations, configurable via lists
|
39 |
-
note: use with a base_lr of 1.0.
|
40 |
-
"""
|
41 |
-
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
-
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
-
self.lr_warm_up_steps = warm_up_steps
|
44 |
-
self.f_start = f_start
|
45 |
-
self.f_min = f_min
|
46 |
-
self.f_max = f_max
|
47 |
-
self.cycle_lengths = cycle_lengths
|
48 |
-
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
-
self.last_f = 0.
|
50 |
-
self.verbosity_interval = verbosity_interval
|
51 |
-
|
52 |
-
def find_in_interval(self, n):
|
53 |
-
interval = 0
|
54 |
-
for cl in self.cum_cycles[1:]:
|
55 |
-
if n <= cl:
|
56 |
-
return interval
|
57 |
-
interval += 1
|
58 |
-
|
59 |
-
def schedule(self, n, **kwargs):
|
60 |
-
cycle = self.find_in_interval(n)
|
61 |
-
n = n - self.cum_cycles[cycle]
|
62 |
-
if self.verbosity_interval > 0:
|
63 |
-
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
-
f"current cycle {cycle}")
|
65 |
-
if n < self.lr_warm_up_steps[cycle]:
|
66 |
-
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
-
self.last_f = f
|
68 |
-
return f
|
69 |
-
else:
|
70 |
-
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
-
t = min(t, 1.0)
|
72 |
-
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
-
1 + np.cos(t * np.pi))
|
74 |
-
self.last_f = f
|
75 |
-
return f
|
76 |
-
|
77 |
-
def __call__(self, n, **kwargs):
|
78 |
-
return self.schedule(n, **kwargs)
|
79 |
-
|
80 |
-
|
81 |
-
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
-
|
83 |
-
def schedule(self, n, **kwargs):
|
84 |
-
cycle = self.find_in_interval(n)
|
85 |
-
n = n - self.cum_cycles[cycle]
|
86 |
-
if self.verbosity_interval > 0:
|
87 |
-
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
-
f"current cycle {cycle}")
|
89 |
-
|
90 |
-
if n < self.lr_warm_up_steps[cycle]:
|
91 |
-
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
-
self.last_f = f
|
93 |
-
return f
|
94 |
-
else:
|
95 |
-
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
-
self.last_f = f
|
97 |
-
return f
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/models/autoencoder.py
DELETED
@@ -1,443 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import pytorch_lightning as pl
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from contextlib import contextmanager
|
5 |
-
|
6 |
-
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
7 |
-
|
8 |
-
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
-
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
-
|
11 |
-
from ldm.util import instantiate_from_config
|
12 |
-
|
13 |
-
|
14 |
-
class VQModel(pl.LightningModule):
|
15 |
-
def __init__(self,
|
16 |
-
ddconfig,
|
17 |
-
lossconfig,
|
18 |
-
n_embed,
|
19 |
-
embed_dim,
|
20 |
-
ckpt_path=None,
|
21 |
-
ignore_keys=[],
|
22 |
-
image_key="image",
|
23 |
-
colorize_nlabels=None,
|
24 |
-
monitor=None,
|
25 |
-
batch_resize_range=None,
|
26 |
-
scheduler_config=None,
|
27 |
-
lr_g_factor=1.0,
|
28 |
-
remap=None,
|
29 |
-
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
-
use_ema=False
|
31 |
-
):
|
32 |
-
super().__init__()
|
33 |
-
self.embed_dim = embed_dim
|
34 |
-
self.n_embed = n_embed
|
35 |
-
self.image_key = image_key
|
36 |
-
self.encoder = Encoder(**ddconfig)
|
37 |
-
self.decoder = Decoder(**ddconfig)
|
38 |
-
self.loss = instantiate_from_config(lossconfig)
|
39 |
-
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
-
remap=remap,
|
41 |
-
sane_index_shape=sane_index_shape)
|
42 |
-
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
-
if colorize_nlabels is not None:
|
45 |
-
assert type(colorize_nlabels)==int
|
46 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
-
if monitor is not None:
|
48 |
-
self.monitor = monitor
|
49 |
-
self.batch_resize_range = batch_resize_range
|
50 |
-
if self.batch_resize_range is not None:
|
51 |
-
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
-
|
53 |
-
self.use_ema = use_ema
|
54 |
-
if self.use_ema:
|
55 |
-
self.model_ema = LitEma(self)
|
56 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
-
|
58 |
-
if ckpt_path is not None:
|
59 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
-
self.scheduler_config = scheduler_config
|
61 |
-
self.lr_g_factor = lr_g_factor
|
62 |
-
|
63 |
-
@contextmanager
|
64 |
-
def ema_scope(self, context=None):
|
65 |
-
if self.use_ema:
|
66 |
-
self.model_ema.store(self.parameters())
|
67 |
-
self.model_ema.copy_to(self)
|
68 |
-
if context is not None:
|
69 |
-
print(f"{context}: Switched to EMA weights")
|
70 |
-
try:
|
71 |
-
yield None
|
72 |
-
finally:
|
73 |
-
if self.use_ema:
|
74 |
-
self.model_ema.restore(self.parameters())
|
75 |
-
if context is not None:
|
76 |
-
print(f"{context}: Restored training weights")
|
77 |
-
|
78 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
-
keys = list(sd.keys())
|
81 |
-
for k in keys:
|
82 |
-
for ik in ignore_keys:
|
83 |
-
if k.startswith(ik):
|
84 |
-
print("Deleting key {} from state_dict.".format(k))
|
85 |
-
del sd[k]
|
86 |
-
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
-
if len(missing) > 0:
|
89 |
-
print(f"Missing Keys: {missing}")
|
90 |
-
print(f"Unexpected Keys: {unexpected}")
|
91 |
-
|
92 |
-
def on_train_batch_end(self, *args, **kwargs):
|
93 |
-
if self.use_ema:
|
94 |
-
self.model_ema(self)
|
95 |
-
|
96 |
-
def encode(self, x):
|
97 |
-
h = self.encoder(x)
|
98 |
-
h = self.quant_conv(h)
|
99 |
-
quant, emb_loss, info = self.quantize(h)
|
100 |
-
return quant, emb_loss, info
|
101 |
-
|
102 |
-
def encode_to_prequant(self, x):
|
103 |
-
h = self.encoder(x)
|
104 |
-
h = self.quant_conv(h)
|
105 |
-
return h
|
106 |
-
|
107 |
-
def decode(self, quant):
|
108 |
-
quant = self.post_quant_conv(quant)
|
109 |
-
dec = self.decoder(quant)
|
110 |
-
return dec
|
111 |
-
|
112 |
-
def decode_code(self, code_b):
|
113 |
-
quant_b = self.quantize.embed_code(code_b)
|
114 |
-
dec = self.decode(quant_b)
|
115 |
-
return dec
|
116 |
-
|
117 |
-
def forward(self, input, return_pred_indices=False):
|
118 |
-
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
-
dec = self.decode(quant)
|
120 |
-
if return_pred_indices:
|
121 |
-
return dec, diff, ind
|
122 |
-
return dec, diff
|
123 |
-
|
124 |
-
def get_input(self, batch, k):
|
125 |
-
x = batch[k]
|
126 |
-
if len(x.shape) == 3:
|
127 |
-
x = x[..., None]
|
128 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
-
if self.batch_resize_range is not None:
|
130 |
-
lower_size = self.batch_resize_range[0]
|
131 |
-
upper_size = self.batch_resize_range[1]
|
132 |
-
if self.global_step <= 4:
|
133 |
-
# do the first few batches with max size to avoid later oom
|
134 |
-
new_resize = upper_size
|
135 |
-
else:
|
136 |
-
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
-
if new_resize != x.shape[2]:
|
138 |
-
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
-
x = x.detach()
|
140 |
-
return x
|
141 |
-
|
142 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
-
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
-
# try not to fool the heuristics
|
145 |
-
x = self.get_input(batch, self.image_key)
|
146 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
-
|
148 |
-
if optimizer_idx == 0:
|
149 |
-
# autoencode
|
150 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
-
last_layer=self.get_last_layer(), split="train",
|
152 |
-
predicted_indices=ind)
|
153 |
-
|
154 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
-
return aeloss
|
156 |
-
|
157 |
-
if optimizer_idx == 1:
|
158 |
-
# discriminator
|
159 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
-
last_layer=self.get_last_layer(), split="train")
|
161 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
-
return discloss
|
163 |
-
|
164 |
-
def validation_step(self, batch, batch_idx):
|
165 |
-
log_dict = self._validation_step(batch, batch_idx)
|
166 |
-
with self.ema_scope():
|
167 |
-
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
-
return log_dict
|
169 |
-
|
170 |
-
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
-
x = self.get_input(batch, self.image_key)
|
172 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
-
self.global_step,
|
175 |
-
last_layer=self.get_last_layer(),
|
176 |
-
split="val"+suffix,
|
177 |
-
predicted_indices=ind
|
178 |
-
)
|
179 |
-
|
180 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
-
self.global_step,
|
182 |
-
last_layer=self.get_last_layer(),
|
183 |
-
split="val"+suffix,
|
184 |
-
predicted_indices=ind
|
185 |
-
)
|
186 |
-
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
-
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
-
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
-
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
-
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
-
self.log_dict(log_dict_ae)
|
194 |
-
self.log_dict(log_dict_disc)
|
195 |
-
return self.log_dict
|
196 |
-
|
197 |
-
def configure_optimizers(self):
|
198 |
-
lr_d = self.learning_rate
|
199 |
-
lr_g = self.lr_g_factor*self.learning_rate
|
200 |
-
print("lr_d", lr_d)
|
201 |
-
print("lr_g", lr_g)
|
202 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
203 |
-
list(self.decoder.parameters())+
|
204 |
-
list(self.quantize.parameters())+
|
205 |
-
list(self.quant_conv.parameters())+
|
206 |
-
list(self.post_quant_conv.parameters()),
|
207 |
-
lr=lr_g, betas=(0.5, 0.9))
|
208 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
209 |
-
lr=lr_d, betas=(0.5, 0.9))
|
210 |
-
|
211 |
-
if self.scheduler_config is not None:
|
212 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
213 |
-
|
214 |
-
print("Setting up LambdaLR scheduler...")
|
215 |
-
scheduler = [
|
216 |
-
{
|
217 |
-
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
218 |
-
'interval': 'step',
|
219 |
-
'frequency': 1
|
220 |
-
},
|
221 |
-
{
|
222 |
-
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
223 |
-
'interval': 'step',
|
224 |
-
'frequency': 1
|
225 |
-
},
|
226 |
-
]
|
227 |
-
return [opt_ae, opt_disc], scheduler
|
228 |
-
return [opt_ae, opt_disc], []
|
229 |
-
|
230 |
-
def get_last_layer(self):
|
231 |
-
return self.decoder.conv_out.weight
|
232 |
-
|
233 |
-
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
234 |
-
log = dict()
|
235 |
-
x = self.get_input(batch, self.image_key)
|
236 |
-
x = x.to(self.device)
|
237 |
-
if only_inputs:
|
238 |
-
log["inputs"] = x
|
239 |
-
return log
|
240 |
-
xrec, _ = self(x)
|
241 |
-
if x.shape[1] > 3:
|
242 |
-
# colorize with random projection
|
243 |
-
assert xrec.shape[1] > 3
|
244 |
-
x = self.to_rgb(x)
|
245 |
-
xrec = self.to_rgb(xrec)
|
246 |
-
log["inputs"] = x
|
247 |
-
log["reconstructions"] = xrec
|
248 |
-
if plot_ema:
|
249 |
-
with self.ema_scope():
|
250 |
-
xrec_ema, _ = self(x)
|
251 |
-
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
252 |
-
log["reconstructions_ema"] = xrec_ema
|
253 |
-
return log
|
254 |
-
|
255 |
-
def to_rgb(self, x):
|
256 |
-
assert self.image_key == "segmentation"
|
257 |
-
if not hasattr(self, "colorize"):
|
258 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
259 |
-
x = F.conv2d(x, weight=self.colorize)
|
260 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
261 |
-
return x
|
262 |
-
|
263 |
-
|
264 |
-
class VQModelInterface(VQModel):
|
265 |
-
def __init__(self, embed_dim, *args, **kwargs):
|
266 |
-
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
267 |
-
self.embed_dim = embed_dim
|
268 |
-
|
269 |
-
def encode(self, x):
|
270 |
-
h = self.encoder(x)
|
271 |
-
h = self.quant_conv(h)
|
272 |
-
return h
|
273 |
-
|
274 |
-
def decode(self, h, force_not_quantize=False):
|
275 |
-
# also go through quantization layer
|
276 |
-
if not force_not_quantize:
|
277 |
-
quant, emb_loss, info = self.quantize(h)
|
278 |
-
else:
|
279 |
-
quant = h
|
280 |
-
quant = self.post_quant_conv(quant)
|
281 |
-
dec = self.decoder(quant)
|
282 |
-
return dec
|
283 |
-
|
284 |
-
|
285 |
-
class AutoencoderKL(pl.LightningModule):
|
286 |
-
def __init__(self,
|
287 |
-
ddconfig,
|
288 |
-
lossconfig,
|
289 |
-
embed_dim,
|
290 |
-
ckpt_path=None,
|
291 |
-
ignore_keys=[],
|
292 |
-
image_key="image",
|
293 |
-
colorize_nlabels=None,
|
294 |
-
monitor=None,
|
295 |
-
):
|
296 |
-
super().__init__()
|
297 |
-
self.image_key = image_key
|
298 |
-
self.encoder = Encoder(**ddconfig)
|
299 |
-
self.decoder = Decoder(**ddconfig)
|
300 |
-
self.loss = instantiate_from_config(lossconfig)
|
301 |
-
assert ddconfig["double_z"]
|
302 |
-
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
303 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
304 |
-
self.embed_dim = embed_dim
|
305 |
-
if colorize_nlabels is not None:
|
306 |
-
assert type(colorize_nlabels)==int
|
307 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
308 |
-
if monitor is not None:
|
309 |
-
self.monitor = monitor
|
310 |
-
if ckpt_path is not None:
|
311 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
312 |
-
|
313 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
314 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
315 |
-
keys = list(sd.keys())
|
316 |
-
for k in keys:
|
317 |
-
for ik in ignore_keys:
|
318 |
-
if k.startswith(ik):
|
319 |
-
print("Deleting key {} from state_dict.".format(k))
|
320 |
-
del sd[k]
|
321 |
-
self.load_state_dict(sd, strict=False)
|
322 |
-
print(f"Restored from {path}")
|
323 |
-
|
324 |
-
def encode(self, x):
|
325 |
-
h = self.encoder(x)
|
326 |
-
moments = self.quant_conv(h)
|
327 |
-
posterior = DiagonalGaussianDistribution(moments)
|
328 |
-
return posterior
|
329 |
-
|
330 |
-
def decode(self, z):
|
331 |
-
z = self.post_quant_conv(z)
|
332 |
-
dec = self.decoder(z)
|
333 |
-
return dec
|
334 |
-
|
335 |
-
def forward(self, input, sample_posterior=True):
|
336 |
-
posterior = self.encode(input)
|
337 |
-
if sample_posterior:
|
338 |
-
z = posterior.sample()
|
339 |
-
else:
|
340 |
-
z = posterior.mode()
|
341 |
-
dec = self.decode(z)
|
342 |
-
return dec, posterior
|
343 |
-
|
344 |
-
def get_input(self, batch, k):
|
345 |
-
x = batch[k]
|
346 |
-
if len(x.shape) == 3:
|
347 |
-
x = x[..., None]
|
348 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
349 |
-
return x
|
350 |
-
|
351 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
352 |
-
inputs = self.get_input(batch, self.image_key)
|
353 |
-
reconstructions, posterior = self(inputs)
|
354 |
-
|
355 |
-
if optimizer_idx == 0:
|
356 |
-
# train encoder+decoder+logvar
|
357 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
358 |
-
last_layer=self.get_last_layer(), split="train")
|
359 |
-
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
360 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
361 |
-
return aeloss
|
362 |
-
|
363 |
-
if optimizer_idx == 1:
|
364 |
-
# train the discriminator
|
365 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
366 |
-
last_layer=self.get_last_layer(), split="train")
|
367 |
-
|
368 |
-
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
369 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
370 |
-
return discloss
|
371 |
-
|
372 |
-
def validation_step(self, batch, batch_idx):
|
373 |
-
inputs = self.get_input(batch, self.image_key)
|
374 |
-
reconstructions, posterior = self(inputs)
|
375 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
376 |
-
last_layer=self.get_last_layer(), split="val")
|
377 |
-
|
378 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
379 |
-
last_layer=self.get_last_layer(), split="val")
|
380 |
-
|
381 |
-
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
382 |
-
self.log_dict(log_dict_ae)
|
383 |
-
self.log_dict(log_dict_disc)
|
384 |
-
return self.log_dict
|
385 |
-
|
386 |
-
def configure_optimizers(self):
|
387 |
-
lr = self.learning_rate
|
388 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
389 |
-
list(self.decoder.parameters())+
|
390 |
-
list(self.quant_conv.parameters())+
|
391 |
-
list(self.post_quant_conv.parameters()),
|
392 |
-
lr=lr, betas=(0.5, 0.9))
|
393 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
394 |
-
lr=lr, betas=(0.5, 0.9))
|
395 |
-
return [opt_ae, opt_disc], []
|
396 |
-
|
397 |
-
def get_last_layer(self):
|
398 |
-
return self.decoder.conv_out.weight
|
399 |
-
|
400 |
-
@torch.no_grad()
|
401 |
-
def log_images(self, batch, only_inputs=False, **kwargs):
|
402 |
-
log = dict()
|
403 |
-
x = self.get_input(batch, self.image_key)
|
404 |
-
x = x.to(self.device)
|
405 |
-
if not only_inputs:
|
406 |
-
xrec, posterior = self(x)
|
407 |
-
if x.shape[1] > 3:
|
408 |
-
# colorize with random projection
|
409 |
-
assert xrec.shape[1] > 3
|
410 |
-
x = self.to_rgb(x)
|
411 |
-
xrec = self.to_rgb(xrec)
|
412 |
-
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
413 |
-
log["reconstructions"] = xrec
|
414 |
-
log["inputs"] = x
|
415 |
-
return log
|
416 |
-
|
417 |
-
def to_rgb(self, x):
|
418 |
-
assert self.image_key == "segmentation"
|
419 |
-
if not hasattr(self, "colorize"):
|
420 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
421 |
-
x = F.conv2d(x, weight=self.colorize)
|
422 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
423 |
-
return x
|
424 |
-
|
425 |
-
|
426 |
-
class IdentityFirstStage(torch.nn.Module):
|
427 |
-
def __init__(self, *args, vq_interface=False, **kwargs):
|
428 |
-
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
429 |
-
super().__init__()
|
430 |
-
|
431 |
-
def encode(self, x, *args, **kwargs):
|
432 |
-
return x
|
433 |
-
|
434 |
-
def decode(self, x, *args, **kwargs):
|
435 |
-
return x
|
436 |
-
|
437 |
-
def quantize(self, x, *args, **kwargs):
|
438 |
-
if self.vq_interface:
|
439 |
-
return x, None, [None, None, None]
|
440 |
-
return x
|
441 |
-
|
442 |
-
def forward(self, x, *args, **kwargs):
|
443 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/models/diffusion/__init__.py
DELETED
File without changes
|
One-2-3-45-master 2/ldm/models/diffusion/classifier.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import pytorch_lightning as pl
|
4 |
-
from omegaconf import OmegaConf
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from torch.optim import AdamW
|
7 |
-
from torch.optim.lr_scheduler import LambdaLR
|
8 |
-
from copy import deepcopy
|
9 |
-
from einops import rearrange
|
10 |
-
from glob import glob
|
11 |
-
from natsort import natsorted
|
12 |
-
|
13 |
-
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
-
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
-
|
16 |
-
__models__ = {
|
17 |
-
'class_label': EncoderUNetModel,
|
18 |
-
'segmentation': UNetModel
|
19 |
-
}
|
20 |
-
|
21 |
-
|
22 |
-
def disabled_train(self, mode=True):
|
23 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
-
does not change anymore."""
|
25 |
-
return self
|
26 |
-
|
27 |
-
|
28 |
-
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
-
|
30 |
-
def __init__(self,
|
31 |
-
diffusion_path,
|
32 |
-
num_classes,
|
33 |
-
ckpt_path=None,
|
34 |
-
pool='attention',
|
35 |
-
label_key=None,
|
36 |
-
diffusion_ckpt_path=None,
|
37 |
-
scheduler_config=None,
|
38 |
-
weight_decay=1.e-2,
|
39 |
-
log_steps=10,
|
40 |
-
monitor='val/loss',
|
41 |
-
*args,
|
42 |
-
**kwargs):
|
43 |
-
super().__init__(*args, **kwargs)
|
44 |
-
self.num_classes = num_classes
|
45 |
-
# get latest config of diffusion model
|
46 |
-
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
-
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
-
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
-
self.load_diffusion()
|
50 |
-
|
51 |
-
self.monitor = monitor
|
52 |
-
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
-
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
-
self.log_steps = log_steps
|
55 |
-
|
56 |
-
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
-
else self.diffusion_model.cond_stage_key
|
58 |
-
|
59 |
-
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
-
|
61 |
-
if self.label_key not in __models__:
|
62 |
-
raise NotImplementedError()
|
63 |
-
|
64 |
-
self.load_classifier(ckpt_path, pool)
|
65 |
-
|
66 |
-
self.scheduler_config = scheduler_config
|
67 |
-
self.use_scheduler = self.scheduler_config is not None
|
68 |
-
self.weight_decay = weight_decay
|
69 |
-
|
70 |
-
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
-
sd = torch.load(path, map_location="cpu")
|
72 |
-
if "state_dict" in list(sd.keys()):
|
73 |
-
sd = sd["state_dict"]
|
74 |
-
keys = list(sd.keys())
|
75 |
-
for k in keys:
|
76 |
-
for ik in ignore_keys:
|
77 |
-
if k.startswith(ik):
|
78 |
-
print("Deleting key {} from state_dict.".format(k))
|
79 |
-
del sd[k]
|
80 |
-
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
-
sd, strict=False)
|
82 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
-
if len(missing) > 0:
|
84 |
-
print(f"Missing Keys: {missing}")
|
85 |
-
if len(unexpected) > 0:
|
86 |
-
print(f"Unexpected Keys: {unexpected}")
|
87 |
-
|
88 |
-
def load_diffusion(self):
|
89 |
-
model = instantiate_from_config(self.diffusion_config)
|
90 |
-
self.diffusion_model = model.eval()
|
91 |
-
self.diffusion_model.train = disabled_train
|
92 |
-
for param in self.diffusion_model.parameters():
|
93 |
-
param.requires_grad = False
|
94 |
-
|
95 |
-
def load_classifier(self, ckpt_path, pool):
|
96 |
-
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
-
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
-
model_config.out_channels = self.num_classes
|
99 |
-
if self.label_key == 'class_label':
|
100 |
-
model_config.pool = pool
|
101 |
-
|
102 |
-
self.model = __models__[self.label_key](**model_config)
|
103 |
-
if ckpt_path is not None:
|
104 |
-
print('#####################################################################')
|
105 |
-
print(f'load from ckpt "{ckpt_path}"')
|
106 |
-
print('#####################################################################')
|
107 |
-
self.init_from_ckpt(ckpt_path)
|
108 |
-
|
109 |
-
@torch.no_grad()
|
110 |
-
def get_x_noisy(self, x, t, noise=None):
|
111 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
-
continuous_sqrt_alpha_cumprod = None
|
113 |
-
if self.diffusion_model.use_continuous_noise:
|
114 |
-
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
-
# todo: make sure t+1 is correct here
|
116 |
-
|
117 |
-
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
-
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
-
|
120 |
-
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
-
return self.model(x_noisy, t)
|
122 |
-
|
123 |
-
@torch.no_grad()
|
124 |
-
def get_input(self, batch, k):
|
125 |
-
x = batch[k]
|
126 |
-
if len(x.shape) == 3:
|
127 |
-
x = x[..., None]
|
128 |
-
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
-
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
-
return x
|
131 |
-
|
132 |
-
@torch.no_grad()
|
133 |
-
def get_conditioning(self, batch, k=None):
|
134 |
-
if k is None:
|
135 |
-
k = self.label_key
|
136 |
-
assert k is not None, 'Needs to provide label key'
|
137 |
-
|
138 |
-
targets = batch[k].to(self.device)
|
139 |
-
|
140 |
-
if self.label_key == 'segmentation':
|
141 |
-
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
-
for down in range(self.numd):
|
143 |
-
h, w = targets.shape[-2:]
|
144 |
-
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
-
|
146 |
-
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
-
|
148 |
-
return targets
|
149 |
-
|
150 |
-
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
-
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
-
if reduction == "mean":
|
153 |
-
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
-
elif reduction == "none":
|
155 |
-
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
-
|
157 |
-
def on_train_epoch_start(self):
|
158 |
-
# save some memory
|
159 |
-
self.diffusion_model.model.to('cpu')
|
160 |
-
|
161 |
-
@torch.no_grad()
|
162 |
-
def write_logs(self, loss, logits, targets):
|
163 |
-
log_prefix = 'train' if self.training else 'val'
|
164 |
-
log = {}
|
165 |
-
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
-
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
-
logits, targets, k=1, reduction="mean"
|
168 |
-
)
|
169 |
-
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
-
logits, targets, k=5, reduction="mean"
|
171 |
-
)
|
172 |
-
|
173 |
-
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
-
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
-
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
-
lr = self.optimizers().param_groups[0]['lr']
|
177 |
-
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
-
|
179 |
-
def shared_step(self, batch, t=None):
|
180 |
-
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
-
targets = self.get_conditioning(batch)
|
182 |
-
if targets.dim() == 4:
|
183 |
-
targets = targets.argmax(dim=1)
|
184 |
-
if t is None:
|
185 |
-
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
-
else:
|
187 |
-
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
-
x_noisy = self.get_x_noisy(x, t)
|
189 |
-
logits = self(x_noisy, t)
|
190 |
-
|
191 |
-
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
-
|
193 |
-
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
-
|
195 |
-
loss = loss.mean()
|
196 |
-
return loss, logits, x_noisy, targets
|
197 |
-
|
198 |
-
def training_step(self, batch, batch_idx):
|
199 |
-
loss, *_ = self.shared_step(batch)
|
200 |
-
return loss
|
201 |
-
|
202 |
-
def reset_noise_accs(self):
|
203 |
-
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
-
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
-
|
206 |
-
def on_validation_start(self):
|
207 |
-
self.reset_noise_accs()
|
208 |
-
|
209 |
-
@torch.no_grad()
|
210 |
-
def validation_step(self, batch, batch_idx):
|
211 |
-
loss, *_ = self.shared_step(batch)
|
212 |
-
|
213 |
-
for t in self.noisy_acc:
|
214 |
-
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
-
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
-
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
-
|
218 |
-
return loss
|
219 |
-
|
220 |
-
def configure_optimizers(self):
|
221 |
-
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
-
|
223 |
-
if self.use_scheduler:
|
224 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
-
|
226 |
-
print("Setting up LambdaLR scheduler...")
|
227 |
-
scheduler = [
|
228 |
-
{
|
229 |
-
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
-
'interval': 'step',
|
231 |
-
'frequency': 1
|
232 |
-
}]
|
233 |
-
return [optimizer], scheduler
|
234 |
-
|
235 |
-
return optimizer
|
236 |
-
|
237 |
-
@torch.no_grad()
|
238 |
-
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
-
log = dict()
|
240 |
-
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
-
log['inputs'] = x
|
242 |
-
|
243 |
-
y = self.get_conditioning(batch)
|
244 |
-
|
245 |
-
if self.label_key == 'class_label':
|
246 |
-
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
-
log['labels'] = y
|
248 |
-
|
249 |
-
if ismap(y):
|
250 |
-
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
-
|
252 |
-
for step in range(self.log_steps):
|
253 |
-
current_time = step * self.log_time_interval
|
254 |
-
|
255 |
-
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
-
|
257 |
-
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
-
|
259 |
-
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
-
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
-
|
262 |
-
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
-
|
264 |
-
for key in log:
|
265 |
-
log[key] = log[key][:N]
|
266 |
-
|
267 |
-
return log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
One-2-3-45-master 2/ldm/models/diffusion/ddim.py
DELETED
@@ -1,326 +0,0 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from tqdm import tqdm
|
6 |
-
from functools import partial
|
7 |
-
from einops import rearrange
|
8 |
-
|
9 |
-
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
10 |
-
from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
|
11 |
-
|
12 |
-
|
13 |
-
class DDIMSampler(object):
|
14 |
-
def __init__(self, model, schedule="linear", **kwargs):
|
15 |
-
super().__init__()
|
16 |
-
self.model = model
|
17 |
-
self.ddpm_num_timesteps = model.num_timesteps
|
18 |
-
self.schedule = schedule
|
19 |
-
self.device = model.device
|
20 |
-
|
21 |
-
def to(self, device):
|
22 |
-
"""Same as to in torch module
|
23 |
-
Don't really underestand why this isn't a module in the first place"""
|
24 |
-
for k, v in self.__dict__.items():
|
25 |
-
if isinstance(v, torch.Tensor):
|
26 |
-
new_v = getattr(self, k).to(device)
|
27 |
-
setattr(self, k, new_v)
|
28 |
-
|
29 |
-
|
30 |
-
def register_buffer(self, name, attr, device=None):
|
31 |
-
if type(attr) == torch.Tensor:
|
32 |
-
attr = attr.to(device)
|
33 |
-
# if attr.device != torch.device("cuda"):
|
34 |
-
# attr = attr.to(torch.device("cuda"))
|
35 |
-
setattr(self, name, attr)
|
36 |
-
|
37 |
-
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
38 |
-
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
39 |
-
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
40 |
-
alphas_cumprod = self.model.alphas_cumprod
|
41 |
-
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
42 |
-
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
43 |
-
|
44 |
-
self.register_buffer('betas', to_torch(self.model.betas), self.device)
|
45 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod), self.device)
|
46 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev), self.device)
|
47 |
-
|
48 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
49 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())), self.device)
|
50 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())), self.device)
|
51 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())), self.device)
|
52 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())), self.device)
|
53 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)), self.device)
|
54 |
-
|
55 |
-
# ddim sampling parameters
|
56 |
-
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
57 |
-
ddim_timesteps=self.ddim_timesteps,
|
58 |
-
eta=ddim_eta,verbose=verbose)
|
59 |
-
self.register_buffer('ddim_sigmas', ddim_sigmas, self.device)
|
60 |
-
self.register_buffer('ddim_alphas', ddim_alphas, self.device)
|
61 |
-
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev, self.device)
|
62 |
-
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas), self.device)
|
63 |
-
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
64 |
-
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
65 |
-
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
66 |
-
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps, self.device)
|
67 |
-
|
68 |
-
@torch.no_grad()
|
69 |
-
def sample(self,
|
70 |
-
S,
|
71 |
-
batch_size,
|
72 |
-
shape,
|
73 |
-
conditioning=None,
|
74 |
-
callback=None,
|
75 |
-
normals_sequence=None,
|
76 |
-
img_callback=None,
|
77 |
-
quantize_x0=False,
|
78 |
-
eta=0.,
|
79 |
-
mask=None,
|
80 |
-
x0=None,
|
81 |
-
temperature=1.,
|
82 |
-
noise_dropout=0.,
|
83 |
-
score_corrector=None,
|
84 |
-
corrector_kwargs=None,
|
85 |
-
verbose=True,
|
86 |
-
x_T=None,
|
87 |
-
log_every_t=100,
|
88 |
-
unconditional_guidance_scale=1.,
|
89 |
-
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
90 |
-
dynamic_threshold=None,
|
91 |
-
**kwargs
|
92 |
-
):
|
93 |
-
if conditioning is not None:
|
94 |
-
if isinstance(conditioning, dict):
|
95 |
-
ctmp = conditioning[list(conditioning.keys())[0]]
|
96 |
-
while isinstance(ctmp, list): ctmp = ctmp[0]
|
97 |
-
cbs = ctmp.shape[0]
|
98 |
-
if cbs != batch_size:
|
99 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
100 |
-
|
101 |
-
else:
|
102 |
-
if conditioning.shape[0] != batch_size:
|
103 |
-
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
104 |
-
|
105 |
-
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
106 |
-
# sampling
|
107 |
-
C, H, W = shape
|
108 |
-
size = (batch_size, C, H, W)
|
109 |
-
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
110 |
-
|
111 |
-
samples, intermediates = self.ddim_sampling(conditioning, size,
|
112 |
-
callback=callback,
|
113 |
-
img_callback=img_callback,
|
114 |
-
quantize_denoised=quantize_x0,
|
115 |
-
mask=mask, x0=x0,
|
116 |
-
ddim_use_original_steps=False,
|
117 |
-
noise_dropout=noise_dropout,
|
118 |
-
temperature=temperature,
|
119 |
-
score_corrector=score_corrector,
|
120 |
-
corrector_kwargs=corrector_kwargs,
|
121 |
-
x_T=x_T,
|
122 |
-
log_every_t=log_every_t,
|
123 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
124 |
-
unconditional_conditioning=unconditional_conditioning,
|
125 |
-
dynamic_threshold=dynamic_threshold,
|
126 |
-
)
|
127 |
-
return samples, intermediates
|
128 |
-
|
129 |
-
@torch.no_grad()
|
130 |
-
def ddim_sampling(self, cond, shape,
|
131 |
-
x_T=None, ddim_use_original_steps=False,
|
132 |
-
callback=None, timesteps=None, quantize_denoised=False,
|
133 |
-
mask=None, x0=None, img_callback=None, log_every_t=100,
|
134 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
135 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
136 |
-
t_start=-1):
|
137 |
-
device = self.model.betas.device
|
138 |
-
b = shape[0]
|
139 |
-
if x_T is None:
|
140 |
-
img = torch.randn(shape, device=device)
|
141 |
-
else:
|
142 |
-
img = x_T
|
143 |
-
|
144 |
-
if timesteps is None:
|
145 |
-
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
146 |
-
elif timesteps is not None and not ddim_use_original_steps:
|
147 |
-
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
148 |
-
timesteps = self.ddim_timesteps[:subset_end]
|
149 |
-
|
150 |
-
timesteps = timesteps[:t_start]
|
151 |
-
|
152 |
-
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
153 |
-
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
154 |
-
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
155 |
-
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
156 |
-
|
157 |
-
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
158 |
-
|
159 |
-
for i, step in enumerate(iterator):
|
160 |
-
index = total_steps - i - 1
|
161 |
-
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
162 |
-
|
163 |
-
if mask is not None:
|
164 |
-
assert x0 is not None
|
165 |
-
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
166 |
-
img = img_orig * mask + (1. - mask) * img
|
167 |
-
|
168 |
-
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
169 |
-
quantize_denoised=quantize_denoised, temperature=temperature,
|
170 |
-
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
171 |
-
corrector_kwargs=corrector_kwargs,
|
172 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
173 |
-
unconditional_conditioning=unconditional_conditioning,
|
174 |
-
dynamic_threshold=dynamic_threshold)
|
175 |
-
img, pred_x0 = outs
|
176 |
-
if callback:
|
177 |
-
img = callback(i, img, pred_x0)
|
178 |
-
if img_callback: img_callback(pred_x0, i)
|
179 |
-
|
180 |
-
if index % log_every_t == 0 or index == total_steps - 1:
|
181 |
-
intermediates['x_inter'].append(img)
|
182 |
-
intermediates['pred_x0'].append(pred_x0)
|
183 |
-
|
184 |
-
return img, intermediates
|
185 |
-
|
186 |
-
@torch.no_grad()
|
187 |
-
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
188 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
189 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
190 |
-
dynamic_threshold=None):
|
191 |
-
b, *_, device = *x.shape, x.device
|
192 |
-
|
193 |
-
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
194 |
-
e_t = self.model.apply_model(x, t, c)
|
195 |
-
else:
|
196 |
-
x_in = torch.cat([x] * 2)
|
197 |
-
t_in = torch.cat([t] * 2)
|
198 |
-
if isinstance(c, dict):
|
199 |
-
assert isinstance(unconditional_conditioning, dict)
|
200 |
-
c_in = dict()
|
201 |
-
for k in c:
|
202 |
-
if isinstance(c[k], list):
|
203 |
-
c_in[k] = [torch.cat([
|
204 |
-
unconditional_conditioning[k][i],
|
205 |
-
c[k][i]]) for i in range(len(c[k]))]
|
206 |
-
else:
|
207 |
-
c_in[k] = torch.cat([
|
208 |
-
unconditional_conditioning[k],
|
209 |
-
c[k]])
|
210 |
-
else:
|
211 |
-
c_in = torch.cat([unconditional_conditioning, c])
|
212 |
-
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
213 |
-
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
214 |
-
|
215 |
-
if score_corrector is not None:
|
216 |
-
assert self.model.parameterization == "eps"
|
217 |
-
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
218 |
-
|
219 |
-
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
220 |
-
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
221 |
-
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
222 |
-
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
223 |
-
# select parameters corresponding to the currently considered timestep
|
224 |
-
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
225 |
-
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
226 |
-
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
227 |
-
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
228 |
-
|
229 |
-
# current prediction for x_0
|
230 |
-
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
231 |
-
if quantize_denoised:
|
232 |
-
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
233 |
-
|
234 |
-
if dynamic_threshold is not None:
|
235 |
-
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
236 |
-
|
237 |
-
# direction pointing to x_t
|
238 |
-
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
239 |
-
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
240 |
-
if noise_dropout > 0.:
|
241 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
242 |
-
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
243 |
-
return x_prev, pred_x0
|
244 |
-
|
245 |
-
@torch.no_grad()
|
246 |
-
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
247 |
-
unconditional_guidance_scale=1.0, unconditional_conditioning=None):
|
248 |
-
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
249 |
-
|
250 |
-
assert t_enc <= num_reference_steps
|
251 |
-
num_steps = t_enc
|
252 |
-
|
253 |
-
if use_original_steps:
|
254 |
-
alphas_next = self.alphas_cumprod[:num_steps]
|
255 |
-
alphas = self.alphas_cumprod_prev[:num_steps]
|
256 |
-
else:
|
257 |
-
alphas_next = self.ddim_alphas[:num_steps]
|
258 |
-
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
259 |
-
|
260 |
-
x_next = x0
|
261 |
-
intermediates = []
|
262 |
-
inter_steps = []
|
263 |
-
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
264 |
-
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
265 |
-
if unconditional_guidance_scale == 1.:
|
266 |
-
noise_pred = self.model.apply_model(x_next, t, c)
|
267 |
-
else:
|
268 |
-
assert unconditional_conditioning is not None
|
269 |
-
e_t_uncond, noise_pred = torch.chunk(
|
270 |
-
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
271 |
-
torch.cat((unconditional_conditioning, c))), 2)
|
272 |
-
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
273 |
-
|
274 |
-
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
275 |
-
weighted_noise_pred = alphas_next[i].sqrt() * (
|
276 |
-
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
277 |
-
x_next = xt_weighted + weighted_noise_pred
|
278 |
-
if return_intermediates and i % (
|
279 |
-
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
280 |
-
intermediates.append(x_next)
|
281 |
-
inter_steps.append(i)
|
282 |
-
elif return_intermediates and i >= num_steps - 2:
|
283 |
-
intermediates.append(x_next)
|
284 |
-
inter_steps.append(i)
|
285 |
-
|
286 |
-
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
287 |
-
if return_intermediates:
|
288 |
-
out.update({'intermediates': intermediates})
|
289 |
-
return x_next, out
|
290 |
-
|
291 |
-
@torch.no_grad()
|
292 |
-
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
293 |
-
# fast, but does not allow for exact reconstruction
|
294 |
-
# t serves as an index to gather the correct alphas
|
295 |
-
if use_original_steps:
|
296 |
-
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
297 |
-
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
298 |
-
else:
|
299 |
-
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
300 |
-
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
301 |
-
|
302 |
-
if noise is None:
|
303 |
-
noise = torch.randn_like(x0)
|
304 |
-
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
305 |
-
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
306 |
-
|
307 |
-
@torch.no_grad()
|
308 |
-
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
309 |
-
use_original_steps=False):
|
310 |
-
|
311 |
-
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
312 |
-
timesteps = timesteps[:t_start]
|
313 |
-
|
314 |
-
time_range = np.flip(timesteps)
|
315 |
-
total_steps = timesteps.shape[0]
|
316 |
-
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
317 |
-
|
318 |
-
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
319 |
-
x_dec = x_latent
|
320 |
-
for i, step in enumerate(iterator):
|
321 |
-
index = total_steps - i - 1
|
322 |
-
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
323 |
-
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
324 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
325 |
-
unconditional_conditioning=unconditional_conditioning)
|
326 |
-
return x_dec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|