File size: 16,707 Bytes
a2b3420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#!/usr/bin/env python

import os
import re
import tempfile
from collections.abc import Iterator
from threading import Thread

import cv2
import gradio as gr
import spaces
import torch
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer

# CSV/TXT ๋ถ„์„
import pandas as pd

# PDF ํ…์ŠคํŠธ ์ถ”์ถœ
import PyPDF2

MAX_CONTENT_CHARS = 8000  # ๋„ˆ๋ฌด ํฐ ํŒŒ์ผ์„ ๋ง‰๊ธฐ ์œ„ํ•ด ์ตœ๋Œ€ ํ‘œ์‹œ 8000์ž

model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
model = Gemma3ForConditionalGeneration.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="eager"
)

MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))


##################################################
# CSV, TXT, PDF ๋ถ„์„ ํ•จ์ˆ˜
##################################################
def analyze_csv_file(path: str) -> str:
    """
    CSV ํŒŒ์ผ์„ ์ „์ฒด ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜. ๋„ˆ๋ฌด ๊ธธ ๊ฒฝ์šฐ ์ผ๋ถ€๋งŒ ํ‘œ์‹œ.
    """
    try:
        df = pd.read_csv(path)
        df_str = df.to_string()
        if len(df_str) > MAX_CONTENT_CHARS:
            df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
    except Exception as e:
        return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"


def analyze_txt_file(path: str) -> str:
    """
    TXT ํŒŒ์ผ ์ „๋ฌธ ์ฝ๊ธฐ. ๋„ˆ๋ฌด ๊ธธ๋ฉด ์ผ๋ถ€๋งŒ ํ‘œ์‹œ.
    """
    try:
        with open(path, "r", encoding="utf-8") as f:
            text = f.read()
        if len(text) > MAX_CONTENT_CHARS:
            text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
        return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
    except Exception as e:
        return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"


def pdf_to_markdown(pdf_path: str) -> str:
    """
    PDF โ†’ Markdown. ํŽ˜์ด์ง€๋ณ„๋กœ ๊ฐ„๋‹จํžˆ ํ…์ŠคํŠธ ์ถ”์ถœ.
    """
    text_chunks = []
    try:
        with open(pdf_path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            for page_num, page in enumerate(reader.pages, start=1):
                page_text = page.extract_text() or ""
                page_text = page_text.strip()
                if page_text:
                    text_chunks.append(f"## Page {page_num}\n\n{page_text}\n")
    except Exception as e:
        return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"

    full_text = "\n".join(text_chunks)
    if len(full_text) > MAX_CONTENT_CHARS:
        full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."

    return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"


##################################################
# ์ด๋ฏธ์ง€/๋น„๋””์˜ค ์—…๋กœ๋“œ ์ œํ•œ ๊ฒ€์‚ฌ
##################################################
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for path in paths:
        if path.endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count


def count_files_in_history(history: list[dict]) -> tuple[int, int]:
    image_count = 0
    video_count = 0
    for item in history:
        if item["role"] != "user" or isinstance(item["content"], str):
            continue
        if item["content"][0].endswith(".mp4"):
            video_count += 1
        else:
            image_count += 1
    return image_count, video_count


def validate_media_constraints(message: dict, history: list[dict]) -> bool:
    """
    - ๋น„๋””์˜ค 1๊ฐœ ์ดˆ๊ณผ ๋ถˆ๊ฐ€
    - ๋น„๋””์˜ค์™€ ์ด๋ฏธ์ง€ ํ˜ผํ•ฉ ๋ถˆ๊ฐ€
    - ์ด๋ฏธ์ง€ ๊ฐœ์ˆ˜ MAX_NUM_IMAGES ์ดˆ๊ณผ ๋ถˆ๊ฐ€
    - <image> ํƒœ๊ทธ๊ฐ€ ์žˆ์œผ๋ฉด ํƒœ๊ทธ ์ˆ˜์™€ ์‹ค์ œ ์ด๋ฏธ์ง€ ์ˆ˜ ์ผ์น˜
    - CSV, TXT, PDF ๋“ฑ์€ ์—ฌ๊ธฐ์„œ ์ œํ•œํ•˜์ง€ ์•Š์Œ
    """
    media_files = []
    for f in message["files"]:
        # ์ด๋ฏธ์ง€: png/jpg/jpeg/gif/webp
        # ๋น„๋””์˜ค: mp4
        # cf) PDF, CSV, TXT ๋“ฑ์€ ์ œ์™ธ
        if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
            media_files.append(f)

    new_image_count, new_video_count = count_files_in_new_message(media_files)
    history_image_count, history_video_count = count_files_in_history(history)
    image_count = history_image_count + new_image_count
    video_count = history_video_count + new_video_count

    if video_count > 1:
        gr.Warning("Only one video is supported.")
        return False
    if video_count == 1:
        if image_count > 0:
            gr.Warning("Mixing images and videos is not allowed.")
            return False
        if "<image>" in message["text"]:
            gr.Warning("Using <image> tags with video files is not supported.")
            return False
    if video_count == 0 and image_count > MAX_NUM_IMAGES:
        gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
        return False
    if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
        gr.Warning("The number of <image> tags in the text does not match the number of images.")
        return False

    return True


##################################################
# ๋น„๋””์˜ค ์ฒ˜๋ฆฌ
##################################################
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
    vidcap = cv2.VideoCapture(video_path)
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))

    frame_interval = int(fps / 3)
    frames = []

    for i in range(0, total_frames, frame_interval):
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))

    vidcap.release()
    return frames


def process_video(video_path: str) -> list[dict]:
    content = []
    frames = downsample_video(video_path)
    for frame in frames:
        pil_image, timestamp = frame
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
            pil_image.save(temp_file.name)
            content.append({"type": "text", "text": f"Frame {timestamp}:"})
            content.append({"type": "image", "url": temp_file.name})
    logger.debug(f"{content=}")
    return content


##################################################
# interleaved <image> ์ฒ˜๋ฆฌ
##################################################
def process_interleaved_images(message: dict) -> list[dict]:
    parts = re.split(r"(<image>)", message["text"])
    content = []
    image_index = 0
    for part in parts:
        if part == "<image>":
            content.append({"type": "image", "url": message["files"][image_index]})
            image_index += 1
        elif part.strip():
            content.append({"type": "text", "text": part.strip()})
        else:
            # ๊ณต๋ฐฑ์ด๊ฑฐ๋‚˜ \n ๊ฐ™์€ ๊ฒฝ์šฐ
            if isinstance(part, str) and part != "<image>":
                content.append({"type": "text", "text": part})
    return content


##################################################
# PDF + CSV + TXT + ์ด๋ฏธ์ง€/๋น„๋””์˜ค
##################################################
def process_new_user_message(message: dict) -> list[dict]:
    if not message["files"]:
        return [{"type": "text", "text": message["text"]}]

    # 1) ํŒŒ์ผ ๋ถ„๋ฅ˜
    video_files = [f for f in message["files"] if f.endswith(".mp4")]
    image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
    csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
    txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
    pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]

    # 2) ์‚ฌ์šฉ์ž ์›๋ณธ text ์ถ”๊ฐ€
    content_list = [{"type": "text", "text": message["text"]}]

    # 3) CSV
    for csv_path in csv_files:
        csv_analysis = analyze_csv_file(csv_path)
        content_list.append({"type": "text", "text": csv_analysis})

    # 4) TXT
    for txt_path in txt_files:
        txt_analysis = analyze_txt_file(txt_path)
        content_list.append({"type": "text", "text": txt_analysis})

    # 5) PDF
    for pdf_path in pdf_files:
        pdf_markdown = pdf_to_markdown(pdf_path)
        content_list.append({"type": "text", "text": pdf_markdown})

    # 6) ๋น„๋””์˜ค (ํ•œ ๊ฐœ๋งŒ ํ—ˆ์šฉ)
    if video_files:
        content_list += process_video(video_files[0])
        return content_list

    # 7) ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ
    if "<image>" in message["text"]:
        # interleaved
        return process_interleaved_images(message)
    else:
        # ์ผ๋ฐ˜ ์—ฌ๋Ÿฌ ์žฅ
        for img_path in image_files:
            content_list.append({"type": "image", "url": img_path})

    return content_list


##################################################
# history -> LLM ๋ฉ”์‹œ์ง€ ๋ณ€ํ™˜
##################################################
def process_history(history: list[dict]) -> list[dict]:
    messages = []
    current_user_content: list[dict] = []
    for item in history:
        if item["role"] == "assistant":
            # user_content๊ฐ€ ์Œ“์—ฌ์žˆ๋‹ค๋ฉด user ๋ฉ”์‹œ์ง€๋กœ ์ €์žฅ
            if current_user_content:
                messages.append({"role": "user", "content": current_user_content})
                current_user_content = []
            # ๊ทธ ๋’ค item์€ assistant
            messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
        else:
            # user
            content = item["content"]
            if isinstance(content, str):
                current_user_content.append({"type": "text", "text": content})
            else:
                # ์ด๋ฏธ์ง€๋‚˜ ๊ธฐํƒ€
                current_user_content.append({"type": "image", "url": content[0]})
    return messages


##################################################
# ๋ฉ”์ธ ์ถ”๋ก  ํ•จ์ˆ˜
##################################################
@spaces.GPU(duration=120)
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
    if not validate_media_constraints(message, history):
        yield ""
        return

    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
    messages.extend(process_history(history))
    messages.append({"role": "user", "content": process_new_user_message(message)})

    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(device=model.device, dtype=torch.bfloat16)

    streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
    )
    t = Thread(target=model.generate, kwargs=gen_kwargs)
    t.start()

    output = ""
    for new_text in streamer:
        output += new_text
        yield output


##################################################
# ์˜ˆ์‹œ๋“ค (๊ธฐ์กด)
##################################################
##################################################
# ์˜ˆ์‹œ๋“ค (ํ•œ๊ธ€ํ™” ๋ฒ„์ „)
##################################################
examples = [

    [
        {
            "text": "PDF ํŒŒ์ผ ๋‚ด์šฉ์„ ์š”์•ฝ, ๋ถ„์„ํ•˜๋ผ.",
            "files": ["assets/additional-examples/pdf.pdf"],
        }
    ],
    [
        {
            "text": "CSV ํŒŒ์ผ ๋‚ด์šฉ์„ ์š”์•ฝ, ๋ถ„์„ํ•˜๋ผ",
            "files": ["assets/additional-examples/sample-csv.csv"],
        }
    ],    
    [
        {
            "text": "๋™์ผํ•œ ๋ง‰๋Œ€ ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ฆฌ๋Š” matplotlib ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/barchart.png"],
        }
    ],
    [
        {
            "text": "์ด ์˜์ƒ์—์„œ ์ด์ƒํ•œ ์ ์ด ๋ฌด์—‡์ธ๊ฐ€์š”?",
            "files": ["assets/additional-examples/tmp.mp4"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ ์ด ์˜์–‘์ œ๋ฅผ <image> ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ์ด ์ œํ’ˆ <image>์„ ์ƒˆ๋กœ ์‚ฌ๋ ค ํ•ฉ๋‹ˆ๋‹ค. ํ•จ๊ป˜ ์„ญ์ทจํ•  ๋•Œ ์ฃผ์˜ํ•ด์•ผ ํ•  ์ ์ด ์žˆ์„๊นŒ์š”?",
            "files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์˜ ์‹œ๊ฐ์  ์š”์†Œ์—์„œ ์˜๊ฐ์„ ๋ฐ›์•„ ์‹œ๋ฅผ ์ž‘์„ฑํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์˜ ์‹œ๊ฐ์  ์š”์†Œ๋ฅผ ํ† ๋Œ€๋กœ ์งง์€ ์•…๊ณก์„ ์ž‘๊ณกํ•ด์ฃผ์„ธ์š”.",
            "files": [
                "assets/sample-images/07-1.png",
                "assets/sample-images/07-2.png",
                "assets/sample-images/07-3.png",
                "assets/sample-images/07-4.png",
            ],
        }
    ],
    [
        {
            "text": "์ด ์ง‘์—์„œ ๋ฌด์Šจ ์ผ์ด ์žˆ์—ˆ์„์ง€ ์งง์€ ์ด์•ผ๊ธฐ๋ฅผ ์ง€์–ด๋ณด์„ธ์š”.",
            "files": ["assets/sample-images/08.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€๋“ค์˜ ์ˆœ์„œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์งง์€ ์ด์•ผ๊ธฐ๋ฅผ ๋งŒ๋“ค์–ด ์ฃผ์„ธ์š”.",
            "files": [
                "assets/sample-images/09-1.png",
                "assets/sample-images/09-2.png",
                "assets/sample-images/09-3.png",
                "assets/sample-images/09-4.png",
                "assets/sample-images/09-5.png",
            ],
        }
    ],
    [
        {
            "text": "์ด ์„ธ๊ณ„์—์„œ ์‚ด๊ณ  ์žˆ์„ ์ƒ๋ฌผ๋“ค์„ ์ƒ์ƒํ•ด์„œ ๋ฌ˜์‚ฌํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/10.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์— ์ ํžŒ ํ…์ŠคํŠธ๋ฅผ ์ฝ์–ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/1.png"],
        }
    ],
    [
        {
            "text": "์ด ํ‹ฐ์ผ“์€ ์–ธ์ œ ๋ฐœ๊ธ‰๋œ ๊ฒƒ์ด๊ณ , ๊ฐ€๊ฒฉ์€ ์–ผ๋งˆ์ธ๊ฐ€์š”?",
            "files": ["assets/additional-examples/2.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์— ์žˆ๋Š” ํ…์ŠคํŠธ๋ฅผ ๊ทธ๋Œ€๋กœ ์ฝ์–ด์„œ ๋งˆํฌ๋‹ค์šด ํ˜•ํƒœ๋กœ ์ ์–ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/3.png"],
        }
    ],
    [
        {
            "text": "์ด ์ ๋ถ„์„ ํ’€์–ด์ฃผ์„ธ์š”.",
            "files": ["assets/additional-examples/4.png"],
        }
    ],
    [
        {
            "text": "์ด ์ด๋ฏธ์ง€๋ฅผ ๊ฐ„๋‹จํžˆ ์บก์…˜์œผ๋กœ ์„ค๋ช…ํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/01.png"],
        }
    ],
    [
        {
            "text": "์ด ํ‘œ์ง€ํŒ์—๋Š” ๋ฌด์Šจ ๋ฌธ๊ตฌ๊ฐ€ ์ ํ˜€ ์žˆ๋‚˜์š”?",
            "files": ["assets/sample-images/02.png"],
        }
    ],
    [
        {
            "text": "๋‘ ์ด๋ฏธ์ง€๋ฅผ ๋น„๊ตํ•ด์„œ ๊ณตํ†ต์ ๊ณผ ์ฐจ์ด์ ์„ ๋งํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/03.png"],
        }
    ],
    [
        {
            "text": "์ด๋ฏธ์ง€์— ๋ณด์ด๋Š” ๋ชจ๋“  ์‚ฌ๋ฌผ๊ณผ ๊ทธ ์ƒ‰์ƒ์„ ๋‚˜์—ดํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/04.png"],
        }
    ],
    [
        {
            "text": "์žฅ๋ฉด์˜ ๋ถ„์œ„๊ธฐ๋ฅผ ๋ฌ˜์‚ฌํ•ด์ฃผ์„ธ์š”.",
            "files": ["assets/sample-images/05.png"],
        }
    ],
]



demo = gr.ChatInterface(
    fn=run,
    type="messages",
    chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
    # .webp, .png, .jpg, .jpeg, .gif, .mp4, .csv, .txt, .pdf ๋ชจ๋‘ ํ—ˆ์šฉ
    textbox=gr.MultimodalTextbox(
        file_types=[
            ".webp", ".png", ".jpg", ".jpeg", ".gif",
            ".mp4", ".csv", ".txt", ".pdf"
        ],
        file_count="multiple",
        autofocus=True
    ),
    multimodal=True,
    additional_inputs=[
        gr.Textbox(
            label="System Prompt",
            value=(
                "You are a deeply thoughtful AI. Consider problems thoroughly and derive "
                "correct solutions through systematic reasoning. Please answer in korean."
            )
        ),
        gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
    ],
    stop_btn=False,
    title="Vidraft-Gemma-3-27B",
    examples=examples,
    run_examples_on_click=False,
    cache_examples=False,
    css_paths="style.css",
    delete_cache=(1800, 1800),
)

if __name__ == "__main__":
    demo.launch()