Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import SanaSprintPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = SanaSprintPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe2 = SanaSprintPipeline.from_pretrained( | |
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe.to(device) | |
pipe2.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# Choose the appropriate model based on selected model size | |
selected_pipe = pipe if model_size == "0.6B" else pipe2 | |
img = selected_pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
output_type="pil" | |
) | |
print(img) | |
return img.images[0], seed | |
examples = [ | |
["a tiny astronaut hatching from an egg on the moon", "1.6B"], | |
["πΆ Wearing πΆ flying on the π", "1.6B"], | |
["an anime illustration of a wiener schnitzel", "0.6B"], | |
["a photorealistic landscape of mountains at sunset", "0.6B"], | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# Sana Sprint""") | |
gr.Markdown("Demo for the real-time [Sana Sprint](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) model") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
model_size = gr.Radio( | |
label="Model Size", | |
choices=["0.6B", "1.6B"], | |
value="1.6B", | |
interactive=True | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=4.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt, model_size], # Add model_size to inputs | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs | |
outputs = [result, seed] | |
) | |
demo.launch() |