Duskfallcrew commited on
Commit
804d4e4
Β·
verified Β·
1 Parent(s): 5b28d86

Update app.py

Browse files

Trying to get it to work, sorry my commit messages are slack
Key Changes and Explanations:

CSS Styling:

The CSS is now correctly passed as a string to the css parameter of gr.Blocks().

I've added an elem_id="main-container" to a gr.Column that wraps the input components and the button. This is important because the CSS targets #main-container to control the layout. Without this, the CSS wouldn't apply correctly.

Markdown Content:

The Markdown content is integrated using gr.Markdown().

I've made some minor formatting improvements:

Used more specific headings (e.g., "### πŸ“₯ Input Sources Supported:").

Used bold text (**) to highlight important points (like "CPU" and "WRITE").

Added Markdown links for the Hugging Face token page, the GitHub repository, and the Ko-fi page. The format is [Link Text](URL).

gr.Column: Using a gr.Column with elem_id="main-container" is crucial for applying the CSS that controls the layout (making the button stick to the bottom).

No other code changes: Functionality remains the same.

Key Changes in this Complete Code:

cached_download Import Removed: The unnecessary import of cached_download is removed.

get_from_cache Used Correctly: The download_model function now correctly uses get_from_cache to check for cached URLs.

Manual Download and Caching: If a URL is not cached, the code downloads it using requests, determines a filename, and saves it to the standard Hugging Face cache directory (HUGGINGFACE_HUB_CACHE).

HF Cache dir: Downloads now go to the correct HF cache, inside a subfolder called "downloads".

HUGGINGFACE_HUB_CACHE Imported: The constant for the cache directory is imported.

Files changed (1) hide show
  1. app.py +178 -50
app.py CHANGED
@@ -13,31 +13,45 @@ import subprocess
13
  from urllib.parse import urlparse, unquote
14
  from pathlib import Path
15
  import tempfile
16
- #from tqdm import tqdm # Removed as not crucial and can break display in gradio.
17
  import psutil
18
  import math
19
  import shutil
20
  import hashlib
21
  from datetime import datetime
22
  from typing import Dict, List, Optional
23
- from huggingface_hub import login, HfApi, hf_hub_download # Import hf_hub_download
24
  from huggingface_hub.utils import validate_repo_id, HFValidationError
25
  from huggingface_hub.errors import HfHubHTTPError
26
- from huggingface_hub import HfApi, hf_hub_download, cached_download, get_from_cache # Import cached_download and get_from_cache
27
- from huggingface_hub.utils import validate_repo_id, HFValidationError
28
- from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
29
 
30
  # ---------------------- DEPENDENCIES ----------------------
31
  def install_dependencies_gradio():
32
  """Installs the necessary dependencies."""
33
  try:
34
- subprocess.run(["pip", "install", "-U", "torch", "diffusers", "transformers", "accelerate", "safetensors", "huggingface_hub", "xformers"])
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  print("Dependencies installed successfully.")
36
  except Exception as e:
37
  print(f"Error installing dependencies: {e}")
38
 
 
39
  # ---------------------- UTILITY FUNCTIONS ----------------------
40
 
 
41
  def increment_filename(filename):
42
  """Increments the filename to avoid overwriting existing files."""
43
  base, ext = os.path.splitext(filename)
@@ -47,10 +61,15 @@ def increment_filename(filename):
47
  counter += 1
48
  return filename
49
 
 
50
  # ---------------------- UPLOAD FUNCTION ----------------------
51
  def create_model_repo(api, user, orgs_name, model_name, make_private=False):
52
  """Creates a Hugging Face model repository."""
53
- repo_id = f"{orgs_name}/{model_name.strip()}" if orgs_name else f"{user['name']}/{model_name.strip()}"
 
 
 
 
54
  try:
55
  api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
56
  print(f"Model repo '{repo_id}' created.")
@@ -58,6 +77,7 @@ def create_model_repo(api, user, orgs_name, model_name, make_private=False):
58
  print(f"Model repo '{repo_id}' already exists.")
59
  return repo_id
60
 
 
61
  # ---------------------- MODEL LOADING AND CONVERSION ----------------------
62
  def download_model(model_path_or_url):
63
  """Downloads a model, handling URLs, HF repos, and local paths, caching appropriately."""
@@ -65,14 +85,16 @@ def download_model(model_path_or_url):
65
  # 1. Check if it's a valid Hugging Face repo ID (and potentially a file within)
66
  try:
67
  validate_repo_id(model_path_or_url)
68
- # It's a valid repo ID; use hf_hub_download
69
  local_path = hf_hub_download(repo_id=model_path_or_url)
70
  return local_path
71
  except HFValidationError:
72
  pass # Not a simple repo ID. Might be repo ID + filename, or a URL.
73
 
74
  # 2. Check if it's a URL
75
- if model_path_or_url.startswith("http://") or model_path_or_url.startswith("https://"):
 
 
76
  # Check if it's already in the cache
77
  cache_path = get_from_cache(model_path_or_url) # Use get_from_cache
78
  if cache_path is not None:
@@ -86,11 +108,11 @@ def download_model(model_path_or_url):
86
  parsed_url = urlparse(model_path_or_url)
87
  filename = os.path.basename(unquote(parsed_url.path))
88
  if not filename:
89
- filename = hashlib.sha256(model_path_or_url.encode()).hexdigest()
90
 
91
- # Construct the cache path (using HF_HUB_CACHE + "downloads" )
92
  cache_dir = os.path.join(HUGGINGFACE_HUB_CACHE, "downloads")
93
- os.makedirs(cache_dir, exist_ok=True) # Ensure the cache directory exists
94
  local_path = os.path.join(cache_dir, filename)
95
 
96
  with open(local_path, "wb") as f:
@@ -112,7 +134,7 @@ def download_model(model_path_or_url):
112
  local_path = hf_hub_download(repo_id=repo_id, filename=filename)
113
  return local_path
114
  else:
115
- raise ValueError("Invalid input format.")
116
 
117
  except HFValidationError:
118
  raise ValueError(f"Invalid model path or URL: {model_path_or_url}")
@@ -125,9 +147,11 @@ def load_sdxl_checkpoint(checkpoint_path):
125
  """Loads an SDXL checkpoint (.ckpt or .safetensors) and returns components."""
126
 
127
  if checkpoint_path.endswith(".safetensors"):
128
- state_dict = load_file(checkpoint_path, device="cpu")
129
  elif checkpoint_path.endswith(".ckpt"):
130
- state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
 
 
131
  else:
132
  raise ValueError("Unsupported checkpoint format. Must be .safetensors or .ckpt")
133
 
@@ -138,17 +162,34 @@ def load_sdxl_checkpoint(checkpoint_path):
138
 
139
  for key, value in state_dict.items():
140
  if key.startswith("first_stage_model."): # VAE
141
- vae_state[key.replace("first_stage_model.", "")] = value.to(torch.float16)
 
 
142
  elif key.startswith("condition_model.model.text_encoder."): # Text Encoder 1
143
- text_encoder1_state[key.replace("condition_model.model.text_encoder.", "")] = value.to(torch.float16)
144
- elif key.startswith("condition_model.model.text_encoder_2."): # Text Encoder 2
145
- text_encoder2_state[key.replace("condition_model.model.text_encoder_2.", "")] = value.to(torch.float16)
 
 
 
 
 
 
 
 
 
 
146
  elif key.startswith("model.diffusion_model."): # UNet
147
- unet_state[key.replace("model.diffusion_model.", "")] = value.to(torch.float16)
 
 
148
 
149
  return text_encoder1_state, text_encoder2_state, vae_state, unet_state
150
 
151
- def build_diffusers_model(text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path=None):
 
 
 
152
  """Builds the Diffusers pipeline components from the loaded state dicts."""
153
 
154
  # Default to SDXL base 1.0 if no reference model is provided
@@ -156,8 +197,12 @@ def build_diffusers_model(text_encoder1_state, text_encoder2_state, vae_state, u
156
  reference_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
157
 
158
  # 1. Text Encoders
159
- config_text_encoder1 = CLIPTextConfig.from_pretrained(reference_model_path, subfolder="text_encoder")
160
- config_text_encoder2 = CLIPTextConfig.from_pretrained(reference_model_path, subfolder="text_encoder_2")
 
 
 
 
161
 
162
  text_encoder1 = CLIPTextModel(config_text_encoder1)
163
  text_encoder2 = CLIPTextModel(config_text_encoder2)
@@ -179,9 +224,11 @@ def build_diffusers_model(text_encoder1_state, text_encoder2_state, vae_state, u
179
  return text_encoder1, text_encoder2, vae, unet
180
 
181
 
182
-
183
- def convert_and_save_sdxl_to_diffusers(checkpoint_path_or_url, output_path, reference_model_path):
 
184
  """Converts an SDXL checkpoint to Diffusers format and saves it.
 
185
  Args:
186
  checkpoint_path_or_url: The path/URL/repo ID of the checkpoint.
187
  """
@@ -189,21 +236,31 @@ def convert_and_save_sdxl_to_diffusers(checkpoint_path_or_url, output_path, refe
189
  # Download the model if necessary (handles URLs, repo IDs, and local paths)
190
  checkpoint_path = download_model(checkpoint_path_or_url)
191
 
192
- text_encoder1_state, text_encoder2_state, vae_state, unet_state = load_sdxl_checkpoint(checkpoint_path)
193
- text_encoder1, text_encoder2, vae, unet = build_diffusers_model(text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path)
194
-
 
 
 
 
 
 
 
195
 
196
  # Load tokenizer and scheduler from the reference model
197
- pipeline = StableDiffusionXLPipeline.from_pretrained(reference_model_path,
198
- text_encoder=text_encoder1,
199
- text_encoder_2=text_encoder2,
200
- vae=vae,
201
- unet=unet,
202
- torch_dtype=torch.float16,)
 
 
203
  pipeline.to("cpu")
204
  pipeline.save_pretrained(output_path)
205
  print(f"Model saved as Diffusers format: {output_path}")
206
 
 
207
  # ---------------------- UPLOAD FUNCTION ----------------------
208
  def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private):
209
  """Uploads a model to the Hugging Face Hub."""
@@ -214,6 +271,7 @@ def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_priv
214
  api.upload_folder(folder_path=model_path, repo_id=model_repo)
215
  print(f"Model uploaded to: https://huggingface.co/{model_repo}")
216
 
 
217
  # ---------------------- GRADIO INTERFACE ----------------------
218
  def main(model_to_load, reference_model, output_path, hf_token, orgs_name, model_name, make_private):
219
  """Main function: SDXL checkpoint to Diffusers, always fp16."""
@@ -223,21 +281,91 @@ def main(model_to_load, reference_model, output_path, hf_token, orgs_name, model
223
  upload_to_huggingface(output_path, hf_token, orgs_name, model_name, make_private)
224
  return "Conversion and upload completed successfully!"
225
  except Exception as e:
226
- return f"An error occurred: {e}" # Return the error message
227
-
228
-
229
- with gr.Blocks() as demo:
230
- model_to_load = gr.Textbox(label="SDXL Checkpoint (Path, URL, or HF Repo)", placeholder="Path, URL, or Hugging Face Repo ID (e.g., my-org/my-model or my-org/my-model/file.safetensors)")
231
- reference_model = gr.Textbox(label="Reference Diffusers Model (Optional)", placeholder="e.g., stabilityai/stable-diffusion-xl-base-1.0 (Leave blank for default)")
232
- output_path = gr.Textbox(label="Output Path (Diffusers Format)", value="output") # Default changed to "output"
233
- hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Your Hugging Face write token")
234
- orgs_name = gr.Textbox(label="Organization Name (Optional)", placeholder="Your organization name")
235
- model_name = gr.Textbox(label="Model Name", placeholder="The name of your model on Hugging Face")
236
- make_private = gr.Checkbox(label="Make Repository Private", value=False)
237
-
238
- convert_button = gr.Button("Convert and Upload")
239
- output = gr.Markdown()
240
-
241
- convert_button.click(fn=main, inputs=[model_to_load, reference_model, output_path, hf_token, orgs_name, model_name, make_private], outputs=output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
 
243
  demo.launch()
 
13
  from urllib.parse import urlparse, unquote
14
  from pathlib import Path
15
  import tempfile
16
+ # from tqdm import tqdm # Removed: not crucial and can break display in gradio.
17
  import psutil
18
  import math
19
  import shutil
20
  import hashlib
21
  from datetime import datetime
22
  from typing import Dict, List, Optional
23
+ from huggingface_hub import login, HfApi, hf_hub_download, get_from_cache # Corrected import
24
  from huggingface_hub.utils import validate_repo_id, HFValidationError
25
  from huggingface_hub.errors import HfHubHTTPError
26
+ from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE # Import HUGGINGFACE_HUB_CACHE
27
+
 
28
 
29
  # ---------------------- DEPENDENCIES ----------------------
30
  def install_dependencies_gradio():
31
  """Installs the necessary dependencies."""
32
  try:
33
+ subprocess.run(
34
+ [
35
+ "pip",
36
+ "install",
37
+ "-U",
38
+ "torch",
39
+ "diffusers",
40
+ "transformers",
41
+ "accelerate",
42
+ "safetensors",
43
+ "huggingface_hub",
44
+ "xformers",
45
+ ]
46
+ )
47
  print("Dependencies installed successfully.")
48
  except Exception as e:
49
  print(f"Error installing dependencies: {e}")
50
 
51
+
52
  # ---------------------- UTILITY FUNCTIONS ----------------------
53
 
54
+
55
  def increment_filename(filename):
56
  """Increments the filename to avoid overwriting existing files."""
57
  base, ext = os.path.splitext(filename)
 
61
  counter += 1
62
  return filename
63
 
64
+
65
  # ---------------------- UPLOAD FUNCTION ----------------------
66
  def create_model_repo(api, user, orgs_name, model_name, make_private=False):
67
  """Creates a Hugging Face model repository."""
68
+ repo_id = (
69
+ f"{orgs_name}/{model_name.strip()}"
70
+ if orgs_name
71
+ else f"{user['name']}/{model_name.strip()}"
72
+ )
73
  try:
74
  api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
75
  print(f"Model repo '{repo_id}' created.")
 
77
  print(f"Model repo '{repo_id}' already exists.")
78
  return repo_id
79
 
80
+
81
  # ---------------------- MODEL LOADING AND CONVERSION ----------------------
82
  def download_model(model_path_or_url):
83
  """Downloads a model, handling URLs, HF repos, and local paths, caching appropriately."""
 
85
  # 1. Check if it's a valid Hugging Face repo ID (and potentially a file within)
86
  try:
87
  validate_repo_id(model_path_or_url)
88
+ # It's a valid repo ID; use hf_hub_download (it handles caching)
89
  local_path = hf_hub_download(repo_id=model_path_or_url)
90
  return local_path
91
  except HFValidationError:
92
  pass # Not a simple repo ID. Might be repo ID + filename, or a URL.
93
 
94
  # 2. Check if it's a URL
95
+ if model_path_or_url.startswith("http://") or model_path_or_url.startswith(
96
+ "https://"
97
+ ):
98
  # Check if it's already in the cache
99
  cache_path = get_from_cache(model_path_or_url) # Use get_from_cache
100
  if cache_path is not None:
 
108
  parsed_url = urlparse(model_path_or_url)
109
  filename = os.path.basename(unquote(parsed_url.path))
110
  if not filename:
111
+ filename = hashlib.sha256(model_path_or_url.encode()).hexdigest()
112
 
113
+ # Construct the cache path (using HF_HUB_CACHE + "downloads")
114
  cache_dir = os.path.join(HUGGINGFACE_HUB_CACHE, "downloads")
115
+ os.makedirs(cache_dir, exist_ok=True) # Ensure cache directory exists
116
  local_path = os.path.join(cache_dir, filename)
117
 
118
  with open(local_path, "wb") as f:
 
134
  local_path = hf_hub_download(repo_id=repo_id, filename=filename)
135
  return local_path
136
  else:
137
+ raise ValueError("Invalid input format.")
138
 
139
  except HFValidationError:
140
  raise ValueError(f"Invalid model path or URL: {model_path_or_url}")
 
147
  """Loads an SDXL checkpoint (.ckpt or .safetensors) and returns components."""
148
 
149
  if checkpoint_path.endswith(".safetensors"):
150
+ state_dict = load_file(checkpoint_path, device="cpu") # Load to CPU
151
  elif checkpoint_path.endswith(".ckpt"):
152
+ state_dict = torch.load(checkpoint_path, map_location="cpu")[
153
+ "state_dict"
154
+ ] # Load to CPU, access ["state_dict"]
155
  else:
156
  raise ValueError("Unsupported checkpoint format. Must be .safetensors or .ckpt")
157
 
 
162
 
163
  for key, value in state_dict.items():
164
  if key.startswith("first_stage_model."): # VAE
165
+ vae_state[key.replace("first_stage_model.", "")] = value.to(
166
+ torch.float16
167
+ ) # FP16 conversion
168
  elif key.startswith("condition_model.model.text_encoder."): # Text Encoder 1
169
+ text_encoder1_state[
170
+ key.replace("condition_model.model.text_encoder.", "")
171
+ ] = value.to(
172
+ torch.float16
173
+ ) # FP16
174
+ elif key.startswith(
175
+ "condition_model.model.text_encoder_2."
176
+ ): # Text Encoder 2
177
+ text_encoder2_state[
178
+ key.replace("condition_model.model.text_encoder_2.", "")
179
+ ] = value.to(
180
+ torch.float16
181
+ ) # FP16
182
  elif key.startswith("model.diffusion_model."): # UNet
183
+ unet_state[key.replace("model.diffusion_model.", "")] = value.to(
184
+ torch.float16
185
+ ) # FP16
186
 
187
  return text_encoder1_state, text_encoder2_state, vae_state, unet_state
188
 
189
+
190
+ def build_diffusers_model(
191
+ text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path=None
192
+ ):
193
  """Builds the Diffusers pipeline components from the loaded state dicts."""
194
 
195
  # Default to SDXL base 1.0 if no reference model is provided
 
197
  reference_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
198
 
199
  # 1. Text Encoders
200
+ config_text_encoder1 = CLIPTextConfig.from_pretrained(
201
+ reference_model_path, subfolder="text_encoder"
202
+ )
203
+ config_text_encoder2 = CLIPTextConfig.from_pretrained(
204
+ reference_model_path, subfolder="text_encoder_2"
205
+ )
206
 
207
  text_encoder1 = CLIPTextModel(config_text_encoder1)
208
  text_encoder2 = CLIPTextModel(config_text_encoder2)
 
224
  return text_encoder1, text_encoder2, vae, unet
225
 
226
 
227
+ def convert_and_save_sdxl_to_diffusers(
228
+ checkpoint_path_or_url, output_path, reference_model_path
229
+ ):
230
  """Converts an SDXL checkpoint to Diffusers format and saves it.
231
+
232
  Args:
233
  checkpoint_path_or_url: The path/URL/repo ID of the checkpoint.
234
  """
 
236
  # Download the model if necessary (handles URLs, repo IDs, and local paths)
237
  checkpoint_path = download_model(checkpoint_path_or_url)
238
 
239
+ text_encoder1_state, text_encoder2_state, vae_state, unet_state = (
240
+ load_sdxl_checkpoint(checkpoint_path)
241
+ )
242
+ text_encoder1, text_encoder2, vae, unet = build_diffusers_model(
243
+ text_encoder1_state,
244
+ text_encoder2_state,
245
+ vae_state,
246
+ unet_state,
247
+ reference_model_path,
248
+ )
249
 
250
  # Load tokenizer and scheduler from the reference model
251
+ pipeline = StableDiffusionXLPipeline.from_pretrained(
252
+ reference_model_path,
253
+ text_encoder=text_encoder1,
254
+ text_encoder_2=text_encoder2,
255
+ vae=vae,
256
+ unet=unet,
257
+ torch_dtype=torch.float16,
258
+ )
259
  pipeline.to("cpu")
260
  pipeline.save_pretrained(output_path)
261
  print(f"Model saved as Diffusers format: {output_path}")
262
 
263
+
264
  # ---------------------- UPLOAD FUNCTION ----------------------
265
  def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private):
266
  """Uploads a model to the Hugging Face Hub."""
 
271
  api.upload_folder(folder_path=model_path, repo_id=model_repo)
272
  print(f"Model uploaded to: https://huggingface.co/{model_repo}")
273
 
274
+
275
  # ---------------------- GRADIO INTERFACE ----------------------
276
  def main(model_to_load, reference_model, output_path, hf_token, orgs_name, model_name, make_private):
277
  """Main function: SDXL checkpoint to Diffusers, always fp16."""
 
281
  upload_to_huggingface(output_path, hf_token, orgs_name, model_name, make_private)
282
  return "Conversion and upload completed successfully!"
283
  except Exception as e:
284
+ return f"An error occurred: {e}" # Return the error message
285
+
286
+
287
+ css = """
288
+ #main-container {
289
+ display: flex;
290
+ flex-direction: column;
291
+ height: 100vh;
292
+ justify-content: space-between;
293
+ font-family: 'Arial', sans-serif;
294
+ font-size: 16px;
295
+ color: #333;
296
+ }
297
+ #convert-button {
298
+ margin-top: auto;
299
+ }
300
+ """
301
+
302
+ with gr.Blocks(css=css) as demo:
303
+ gr.Markdown(
304
+ """
305
+ # 🎨 SDXL Model Converter
306
+ Convert SDXL checkpoints to Diffusers format (FP16, CPU-only).
307
+
308
+ ### πŸ“₯ Input Sources Supported:
309
+ - Local model files (.safetensors, .ckpt)
310
+ - Direct URLs to model files
311
+ - Hugging Face model repositories (e.g., 'my-org/my-model' or 'my-org/my-model/file.safetensors')
312
+
313
+ ### ℹ️ Important Notes:
314
+ - This tool runs on **CPU**, conversion might be slower than on GPU.
315
+ - For Hugging Face uploads, you need a **WRITE** token (not a read token).
316
+ - Get your HF token here: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)
317
+
318
+ ### πŸ’Ύ Memory Usage:
319
+ - This space is configured for **FP16** precision to reduce memory usage.
320
+ - Close other applications during conversion.
321
+ - For large models, ensure you have at least 16GB of RAM.
322
+
323
+ ### πŸ’» Source Code:
324
+ - [GitHub Repository](https://github.com/Ktiseos-Nyx/Gradio-SDXL-Diffusers)
325
+
326
+ ### πŸ™ Support:
327
+ - If you're interested in funding more projects: [Ko-fi](https://ko-fi.com/duskfallcrew)
328
+ """
329
+ )
330
+
331
+ with gr.Column(elem_id="main-container"): # Use a Column for layout
332
+ model_to_load = gr.Textbox(
333
+ label="SDXL Checkpoint (Path, URL, or HF Repo)",
334
+ placeholder="Path, URL, or Hugging Face Repo ID (e.g., my-org/my-model or my-org/my-model/file.safetensors)",
335
+ )
336
+ reference_model = gr.Textbox(
337
+ label="Reference Diffusers Model (Optional)",
338
+ placeholder="e.g., stabilityai/stable-diffusion-xl-base-1.0 (Leave blank for default)",
339
+ )
340
+ output_path = gr.Textbox(
341
+ label="Output Path (Diffusers Format)", value="output"
342
+ ) # Default changed to "output"
343
+ hf_token = gr.Textbox(
344
+ label="Hugging Face Token", placeholder="Your Hugging Face write token"
345
+ )
346
+ orgs_name = gr.Textbox(
347
+ label="Organization Name (Optional)", placeholder="Your organization name"
348
+ )
349
+ model_name = gr.Textbox(
350
+ label="Model Name", placeholder="The name of your model on Hugging Face"
351
+ )
352
+ make_private = gr.Checkbox(label="Make Repository Private", value=False)
353
+
354
+ convert_button = gr.Button("Convert and Upload", elem_id="convert-button")
355
+ output = gr.Markdown()
356
+
357
+ convert_button.click(
358
+ fn=main,
359
+ inputs=[
360
+ model_to_load,
361
+ reference_model,
362
+ output_path,
363
+ hf_token,
364
+ orgs_name,
365
+ model_name,
366
+ make_private,
367
+ ],
368
+ outputs=output,
369
+ )
370
 
371
  demo.launch()