File size: 20,909 Bytes
e9917a9
 
 
53f71cb
 
 
 
e9917a9
 
 
 
 
 
 
53f71cb
 
e9917a9
 
 
53f71cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9917a9
53f71cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9917a9
 
53f71cb
 
 
 
e9917a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53f71cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9917a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53f71cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9917a9
53f71cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9917a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53f71cb
 
e9917a9
53f71cb
 
 
e9917a9
53f71cb
e9917a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a975c0
e9917a9
 
 
 
 
 
 
 
6a975c0
e9917a9
 
6a975c0
 
 
e9917a9
6a975c0
 
 
e9917a9
6a975c0
 
e9917a9
6a975c0
 
e9917a9
6a975c0
 
e9917a9
6a975c0
 
 
e9917a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a975c0
e9917a9
 
 
6a975c0
 
 
e9917a9
6a975c0
e9917a9
6a975c0
 
e9917a9
 
 
 
6a975c0
e9917a9
1f5af3a
 
 
53f71cb
 
 
 
1f5af3a
e9917a9
 
 
 
 
 
 
 
 
 
 
 
 
 
1f5af3a
53f71cb
e9917a9
 
 
 
 
 
 
 
 
 
6a975c0
e9917a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL
from transformers import CLIPTextModel, CLIPTextConfig
from safetensors.torch import load_file
from collections import OrderedDict
import re
import json
import gdown
import requests
import subprocess
from urllib.parse import urlparse, unquote
from pathlib import Path
import tempfile
from tqdm import tqdm

# ---------------------- UTILITY FUNCTIONS ----------------------

def is_valid_url(url):
    """Checks if a string is a valid URL."""
    try:
        result = urlparse(url)
        return all([result.scheme, result.netloc])
    except:
        return False

def get_filename(url):
    response = requests.get(url, stream=True)
    response.raise_for_status()

    if 'content-disposition' in response.headers:
        content_disposition = response.headers['content-disposition']
        filename = re.findall('filename="?([^"]+)"?', content_disposition)[0]
    else:
        url_path = urlparse(url).path
        filename = unquote(os.path.basename(url_path))

    return filename

def get_supported_extensions():
    return tuple([".ckpt", ".safetensors", ".pt", ".pth"])

def download_model(url, dst, output_widget):
    filename = get_filename(url)
    filepath = os.path.join(dst, filename)
    try:
        if "drive.google.com" in url:
            gdown = gdown_download(url, dst, filepath)
        else:
            if "huggingface.co" in url:
                if "/blob/" in url:
                    url = url.replace("/blob/", "/resolve/")
            subprocess.run(["aria2c","-x 16",url,"-d",dst,"-o",filename])
        with output_widget:
            return filepath
    except Exception as e:
       with output_widget:
            return None

def determine_load_checkpoint(model_to_load):
    """Determines if the model to load is a checkpoint, Diffusers model, or URL."""
    if is_valid_url(model_to_load) and (model_to_load.endswith(get_supported_extensions())):
        return True
    elif model_to_load.endswith(get_supported_extensions()):
        return True
    elif os.path.isdir(model_to_load):
        required_folders = {"unet", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler", "vae"}
        if required_folders.issubset(set(os.listdir(model_to_load))) and os.path.isfile(os.path.join(model_to_load, "model_index.json")):
            return False
    return None  # handle this case as required

def create_model_repo(api, user, orgs_name, model_name, make_private=False):
    """Creates a Hugging Face model repository if it doesn't exist."""
    if orgs_name == "":
        repo_id = user["name"] + "/" + model_name.strip()
    else:
        repo_id = orgs_name + "/" + model_name.strip()

    try:
        validate_repo_id(repo_id)
        api.create_repo(repo_id=repo_id, repo_type="model", private=make_private)
        print(f"Model repo '{repo_id}' didn't exist, creating repo")
    except HfHubHTTPError as e:
        print(f"Model repo '{repo_id}' exists, skipping create repo")

    print(f"Model repo '{repo_id}' link: https://huggingface.co/{repo_id}\n")

    return repo_id

def is_diffusers_model(model_path):
    """Checks if a given path is a valid Diffusers model directory."""
    required_folders = {"unet", "text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2", "scheduler", "vae"}
    return required_folders.issubset(set(os.listdir(model_path))) and os.path.isfile(os.path.join(model_path, "model_index.json"))

# ---------------------- MODEL UTIL (From library.sdxl_model_util) ----------------------
def load_models_from_sdxl_checkpoint(sdxl_base_id, checkpoint_path, device):
    """Loads SDXL model components from a checkpoint file."""
    text_encoder1 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder").to(device)
    text_encoder2 = CLIPTextModel.from_pretrained(sdxl_base_id, subfolder="text_encoder_2").to(device)
    vae = AutoencoderKL.from_pretrained(sdxl_base_id, subfolder="vae").to(device)
    unet = UNet2DConditionModel.from_pretrained(sdxl_base_id, subfolder="unet").to(device)
    unet = unet

    ckpt_state_dict = torch.load(checkpoint_path, map_location=device)

    o = OrderedDict()
    for key in list(ckpt_state_dict.keys()):
        o[key.replace("module.", "")] = ckpt_state_dict[key]
    del ckpt_state_dict

    print("Applying weights to text encoder 1:")
    text_encoder1.load_state_dict({
        '.'.join(key.split('.')[1:]): o[key] for key in list(o.keys()) if key.startswith("first_stage_model.cond_stage_model.model.transformer")
    }, strict=False)
    print("Applying weights to text encoder 2:")
    text_encoder2.load_state_dict({
        '.'.join(key.split('.')[1:]): o[key] for key in list(o.keys()) if key.startswith("cond_stage_model.model.transformer")
    }, strict=False)
    print("Applying weights to VAE:")
    vae.load_state_dict({
        '.'.join(key.split('.')[2:]): o[key] for key in list(o.keys()) if key.startswith("first_stage_model.model")
    }, strict=False)
    print("Applying weights to UNet:")
    unet.load_state_dict({
        key: o[key] for key in list(o.keys()) if key.startswith("model.diffusion_model")
    }, strict=False)

    logit_scale = None #Not used here!
    global_step = None #Not used here!
    return text_encoder1, text_encoder2, vae, unet, logit_scale, global_step

def save_stable_diffusion_checkpoint(save_path, text_encoder1, text_encoder2, unet, epoch, global_step, ckpt_info, vae, logit_scale, save_dtype):
    """Saves the stable diffusion checkpoint."""
    weights = OrderedDict()
    text_encoder1_dict = text_encoder1.state_dict()
    text_encoder2_dict = text_encoder2.state_dict()
    unet_dict = unet.state_dict()
    vae_dict = vae.state_dict()

    def replace_key(key):
        key = "cond_stage_model.model.transformer." + key
        return key

    print("Merging text encoder 1")
    for key in tqdm(list(text_encoder1_dict.keys())):
        weights["first_stage_model.cond_stage_model.model.transformer." + key] = text_encoder1_dict[key].to(save_dtype)

    print("Merging text encoder 2")
    for key in tqdm(list(text_encoder2_dict.keys())):
        weights[replace_key(key)] = text_encoder2_dict[key].to(save_dtype)

    print("Merging vae")
    for key in tqdm(list(vae_dict.keys())):
        weights["first_stage_model.model." + key] = vae_dict[key].to(save_dtype)

    print("Merging unet")
    for key in tqdm(list(unet_dict.keys())):
        weights["model.diffusion_model." + key] = unet_dict[key].to(save_dtype)

    info = {"epoch": epoch, "global_step": global_step}
    if ckpt_info is not None:
        info.update(ckpt_info)

    if logit_scale is not None:
        info["logit_scale"] = logit_scale.item()

    torch.save({"state_dict": weights, "info": info}, save_path)

    key_count = len(weights.keys())
    del weights
    del text_encoder1_dict, text_encoder2_dict, unet_dict, vae_dict
    return key_count

def save_diffusers_checkpoint(save_path, text_encoder1, text_encoder2, unet, reference_model, vae, trim_if_model_exists, save_dtype):
    """Saves Diffusers-style checkpoint from the model."""
    print("Saving SDXL as Diffusers format to:", save_path)
    print("SDXL Text Encoder 1 to:", os.path.join(save_path, "text_encoder"))
    text_encoder1.save_pretrained(os.path.join(save_path, "text_encoder"))

    print("SDXL Text Encoder 2 to:", os.path.join(save_path, "text_encoder_2"))
    text_encoder2.save_pretrained(os.path.join(save_path, "text_encoder_2"))

    print("SDXL VAE to:", os.path.join(save_path, "vae"))
    vae.save_pretrained(os.path.join(save_path, "vae"))

    print("SDXL UNet to:", os.path.join(save_path, "unet"))
    unet.save_pretrained(os.path.join(save_path, "unet"))

    if reference_model is not None:
        print(f"Copying scheduler from {reference_model}")
        scheduler_src = StableDiffusionXLPipeline.from_pretrained(reference_model, torch_dtype=torch.float16).scheduler
        torch.save(scheduler_src.config, os.path.join(save_path, "scheduler", "scheduler_config.json"))
    else:
        print(f"No reference Model. Copying scheduler from original model.")
        scheduler_src = StableDiffusionXLPipeline.from_pretrained(reference_model, torch_dtype=torch.float16).scheduler
        scheduler_src.save_pretrained(save_path)

    if trim_if_model_exists:
        print("Trim Complete")

# ---------------------- CONVERSION AND UPLOAD FUNCTIONS ----------------------

def load_sdxl_model(args, is_load_checkpoint, load_dtype, output_widget):
    """Loads the SDXL model from a checkpoint or Diffusers model."""
    model_load_message = "checkpoint" if is_load_checkpoint else "Diffusers" + (" as fp16" if args.fp16 else "")
    with output_widget:
        print(f"Loading {model_load_message}: {args.model_to_load}")

    if is_load_checkpoint:
        loaded_model_data = load_from_sdxl_checkpoint(args, output_widget)
    else:
        loaded_model_data = load_sdxl_from_diffusers(args, load_dtype)

    return loaded_model_data

def load_from_sdxl_checkpoint(args, output_widget):
    """Loads the SDXL model components from a checkpoint file (placeholder)."""
    text_encoder1, text_encoder2, vae, unet = None, None, None, None
    device = "cpu"
    if is_valid_url(args.model_to_load):
        tmp_model_name = "download"
        download_dst_dir = tempfile.mkdtemp()
        model_path = download_model(args.model_to_load, download_dst_dir, output_widget)
        #model_path = os.path.join(download_dst_dir,tmp_model_name)
        if model_path == None:
            with output_widget:
                print("Loading from Checkpoint failed, the request could not be completed")
            return text_encoder1, text_encoder2, vae, unet
        else:
            # Implement Load model from ckpt or safetensors
            try:
                text_encoder1, text_encoder2, vae, unet, _, _ = load_models_from_sdxl_checkpoint(
                    "sdxl_base_v1-0", model_path, device
                )
                return text_encoder1, text_encoder2, vae, unet
            except Exception as e:
                print(f"Could not load SDXL from checkpoint due to: \n{e}")
                return text_encoder1, text_encoder2, vae, unet

            with output_widget:
                print(f"Loading from Checkpoint from URL needs to be implemented - using {model_path}")
    else:
        # Implement Load model from ckpt or safetensors
        try:
            text_encoder1, text_encoder2, vae, unet, _, _ = load_models_from_sdxl_checkpoint(
                "sdxl_base_v1-0", args.model_to_load, device
            )
            return text_encoder1, text_encoder2, vae, unet
        except Exception as e:
            print(f"Could not load SDXL from checkpoint due to: \n{e}")
            return text_encoder1, text_encoder2, vae, unet

        with output_widget:
            print("Loading from Checkpoint needs to be implemented.")

    return text_encoder1, text_encoder2, vae, unet

def load_sdxl_from_diffusers(args, load_dtype):
    """Loads an SDXL model from a Diffusers model directory."""
    pipeline = StableDiffusionXLPipeline.from_pretrained(
        args.model_to_load, torch_dtype=load_dtype, tokenizer=None, tokenizer_2=None, scheduler=None
    )
    text_encoder1 = pipeline.text_encoder
    text_encoder2 = pipeline.text_encoder_2
    vae = pipeline.vae
    unet = pipeline.unet

    return text_encoder1, text_encoder2, vae, unet

def convert_and_save_sdxl_model(args, is_save_checkpoint, loaded_model_data, save_dtype, output_widget):
    """Converts and saves the SDXL model as either a checkpoint or a Diffusers model."""
    text_encoder1, text_encoder2, vae, unet = loaded_model_data
    model_save_message = "checkpoint" + ("" if save_dtype is None else f" in {save_dtype}") if is_save_checkpoint else "Diffusers"

    with output_widget:
        print(f"Converting and saving as {model_save_message}: {args.model_to_save}")

    if is_save_checkpoint:
        save_sdxl_as_checkpoint(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget)
    else:
        save_sdxl_as_diffusers(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget)

def save_sdxl_as_checkpoint(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget):
    """Saves the SDXL model components as a checkpoint file (placeholder)."""
    logit_scale = None
    ckpt_info = None

    key_count = save_stable_diffusion_checkpoint(
        args.model_to_save, text_encoder1, text_encoder2, unet, args.epoch, args.global_step, ckpt_info, vae, logit_scale, save_dtype
        )
    with output_widget:
        print(f"Model saved. Total converted state_dict keys: {key_count}")

def save_sdxl_as_diffusers(args, text_encoder1, text_encoder2, vae, unet, save_dtype, output_widget):
    """Saves the SDXL model as a Diffusers model."""
    with output_widget:
        reference_model_message = args.reference_model if args.reference_model is not None else 'default model'
        print(f"Copying scheduler/tokenizer config from: {reference_model_message}")

    # Save diffusers pipeline
    pipeline = StableDiffusionXLPipeline(
        vae=vae,
        text_encoder=text_encoder1,
        text_encoder_2=text_encoder2,
        unet=unet,
        scheduler=None,  # Replace None if there is a scheduler
        tokenizer=None,  # Replace None if there is a tokenizer
        tokenizer_2=None  # Replace None if there is a tokenizer_2
    )

    pipeline.save_pretrained(args.model_to_save)

    with output_widget:
        print(f"Model saved as {save_dtype}.")

def convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, output_widget):
    """Main conversion function."""
    class Args:  # Defining Args locally within convert_model
        def __init__(self, model_to_load, save_precision_as, epoch, global_step, reference_model, output_path, fp16):
            self.model_to_load = model_to_load
            self.save_precision_as = save_precision_as
            self.epoch = epoch
            self.global_step = global_step
            self.reference_model = reference_model
            self.output_path = output_path #Using output_path even if hardcoded
            self.fp16 = fp16

    with tempfile.TemporaryDirectory() as tmpdirname:
        args = Args(model_to_load, save_precision_as, epoch, global_step, reference_model, tmpdirname, fp16)
        args.model_to_save = increment_filename(os.path.splitext(args.model_to_load)[0] + ".safetensors")

        try:
            load_dtype = torch.float16 if fp16 else None
            save_dtype = get_save_dtype(save_precision_as)

            is_load_checkpoint = determine_load_checkpoint(model_to_load)
            is_save_checkpoint = not is_load_checkpoint  # reverse of load model

            loaded_model_data = load_sdxl_model(args, is_load_checkpoint, load_dtype, output_widget)
            convert_and_save_sdxl_model(args, is_save_checkpoint, loaded_model_data, save_dtype, output_widget)

            with output_widget:
                return f"Conversion complete. Model saved to {args.model_to_save}"

        except Exception as e:
            with output_widget:
                return f"Conversion failed: {e}"

def upload_to_huggingface(model_path, hf_token, orgs_name, model_name, make_private, output_widget):
    """Uploads a model to the Hugging Face Hub."""
    try:
        login(hf_token, add_to_git_credential=True)
        api = HfApi()
        user = api.whoami(hf_token)
        model_repo = create_model_repo(api, user, orgs_name, model_name, make_private)

        # Determine upload parameters (adjust as needed)
        path_in_repo = ""
        trained_model = os.path.basename(model_path)

        path_in_repo_local = path_in_repo if path_in_repo and not is_diffusers_model(model_path) else ""

        notification = f"Uploading {trained_model} from {model_path} to https://huggingface.co/{model_repo}"
        with output_widget:
            print(notification)

        if os.path.isdir(model_path):
            if is_diffusers_model(model_path):
                commit_message = f"Upload diffusers format: {trained_model}"
                print("Detected diffusers model. Adjusting upload parameters.")
            else:
                commit_message = f"Upload checkpoint: {trained_model}"
                print("Detected regular model. Adjusting upload parameters.")

            api.upload_folder(
                folder_path=model_path,
                path_in_repo=path_in_repo_local,
                repo_id=model_repo,
                commit_message=commit_message,
                ignore_patterns=".ipynb_checkpoints",
            )
        else:
            commit_message = f"Upload file: {trained_model}"
            api.upload_file(
                path_or_fileobj=model_path,
                path_in_repo=path_in_repo_local,
                repo_id=model_repo,
                commit_message=commit_message,
            )
        with output_widget:
            return f"Model upload complete! Check it out at https://huggingface.co/{model_repo}/tree/main"

    except Exception as e:
        with output_widget:
            return f"Upload failed: {e}"

# ---------------------- GRADIO INTERFACE ----------------------

def main(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, hf_token, orgs_name, model_name, make_private):
  """Main function orchestrating the entire process."""
  output = gr.Markdown()

  # Create tempdir, will only be there for the function
  with tempfile.TemporaryDirectory() as output_path:
    conversion_output = convert_model(model_to_load, save_precision_as, epoch, global_step, reference_model, fp16, output)

    upload_output = upload_to_huggingface(output_path, hf_token, orgs_name, model_name, make_private, output)

    # Return a combined output
    return f"{conversion_output}\n\n{upload_output}"

with gr.Blocks() as demo:

    # Add initial warnings (only once)
    gr.Markdown(f"""
        ## **⚠️ IMPORTANT WARNINGS ⚠️**
        This App is Coded by an LLM partially, and for more information please go here: [Ktiseos Nyx](https://github.com/Ktiseos-Nyx/Sdxl-to-diffusers). The colab edition of this may indeed break AUP. This space is running on CPU and in theory SHOULD work, but may be slow. Earth and Dusk/ Ktiseos Nyx does not have the enterprise budget for ZERO GPU or any gpu sadly! Thank you to the community, John6666 especially for coming to aid when gemini would NOT fix the requirements. Support Ktiseos Nyx & Myself on Ko-fi: [![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/Z8Z8L4EO)
    """)
    gr.Markdown(f"""**Understanding the 'Model to Load' Input:**

        This field can accept any of the following:
        *   A Hugging Face model identifier (e.g., `stabilityai/stable-diffusion-xl-base-1.0`).
        *   A direct URL to a .ckpt or .safetensors model file.
        *   **Important:** Huggingface direct links need to end as /resolve/main/ and the name of the model after.""")
    model_to_load = gr.Textbox(label="Model to Load (Checkpoint or Diffusers)", placeholder="Path to model")
    with gr.Row():
        save_precision_as = gr.Dropdown(
            choices=["fp16", "bf16", "float"], value="fp16", label="Save Precision As"
        )
        fp16 = gr.Checkbox(label="Load as fp16 (Diffusers only)")
    with gr.Row():
        epoch = gr.Number(value=0, label="Epoch to Write (Checkpoint)")
        global_step = gr.Number(value=0, label="Global Step to Write (Checkpoint)")

    reference_model = gr.Textbox(label="Reference Diffusers Model",
                                 placeholder="e.g., stabilityai/stable-diffusion-xl-base-1.0")

    gr.Markdown("## Hugging Face Hub Configuration")
    gr.Markdown("Your Access Token can be found here:[Token](https://huggingface.co/settings/tokens) **⚠️ IMPORTANT WARNINGS ⚠️** Do not share your token, and with reason you should refresh your token after use for security.")
    hf_token = gr.Textbox(type="password", label="Hugging Face Token", placeholder="Your Hugging Face write token") #THIS IS NEEDED
    with gr.Row():
        orgs_name = gr.Textbox(label="Organization Name (Optional)", placeholder="Your organization name")
        model_name = gr.Textbox(label="Model Name", placeholder="The name of your model on Hugging Face")
    make_private = gr.Checkbox(label="Make Repository Private", value=False)

    convert_button = gr.Button("Convert and Upload")
    output = gr.Markdown()

    convert_button.click(fn=main,
                       inputs=[model_to_load, save_precision_as, epoch, global_step, reference_model,
                               fp16, hf_token, orgs_name, model_name, make_private],
                       outputs=output)

demo.launch()