Spaces:
Build error
Build error
Upload folder using huggingface_hub
Browse files- Dockerfile +14 -0
- app.py +87 -0
- requirements.txt +11 -0
- superkart_sales_prediction_model_v1_0.joblib +3 -0
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
# Set the working directory inside the container
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Copy all files from deployment_files into the container
|
7 |
+
COPY deployment_files/ ./
|
8 |
+
|
9 |
+
# Install dependencies
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
11 |
+
|
12 |
+
# Run the Flask app with Gunicorn
|
13 |
+
# Here: app.py is in deployment_files, Flask instance = store_sales_api
|
14 |
+
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:store_sales_api"]
|
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import numpy as np
|
3 |
+
import joblib # For loading the serialized model
|
4 |
+
import pandas as pd # For data manipulation
|
5 |
+
from flask import Flask, request, jsonify # For creating the Flask API
|
6 |
+
|
7 |
+
# Initialize the Flask application
|
8 |
+
store_sales_api = Flask("SuperKart Store Sales Predictor")
|
9 |
+
|
10 |
+
# Load the trained machine learning model
|
11 |
+
model = joblib.load("store_sales_prediction_model_v1_0.joblib")
|
12 |
+
|
13 |
+
# Define a route for the home page (GET request)
|
14 |
+
@store_sales_api.get('/')
|
15 |
+
def home():
|
16 |
+
"""
|
17 |
+
Root endpoint to check if the API is running.
|
18 |
+
"""
|
19 |
+
return "Welcome to the SuperKart Store Sales Prediction API!"
|
20 |
+
|
21 |
+
# Define an endpoint for single store sales prediction (POST request)
|
22 |
+
@store_sales_api.post('/v1/sale')
|
23 |
+
def predict_store_sales():
|
24 |
+
"""
|
25 |
+
Handles POST requests for predicting sales of a single store.
|
26 |
+
Expects JSON input with store details.
|
27 |
+
"""
|
28 |
+
# Get JSON input
|
29 |
+
store_data = request.get_json()
|
30 |
+
|
31 |
+
# Extract relevant features (update according to your dataset)
|
32 |
+
sample = {
|
33 |
+
'Store_Type': store_data['Store_Type'],
|
34 |
+
'Location_Type': store_data['Location_Type'],
|
35 |
+
'Region_Code': store_data['Region_Code'],
|
36 |
+
'Holiday': store_data['Holiday'],
|
37 |
+
'Discount': store_data['Discount']
|
38 |
+
# Add any other features you used during training
|
39 |
+
}
|
40 |
+
|
41 |
+
# Convert into DataFrame
|
42 |
+
input_data = pd.DataFrame([sample])
|
43 |
+
|
44 |
+
# Make prediction (direct Store_Sales prediction)
|
45 |
+
predicted_sales = model.predict(input_data)[0]
|
46 |
+
|
47 |
+
# Convert to Python float and round
|
48 |
+
predicted_sales = round(float(predicted_sales), 2)
|
49 |
+
|
50 |
+
# Return JSON response
|
51 |
+
return jsonify({'Predicted Store Sales': predicted_sales})
|
52 |
+
|
53 |
+
# Define an endpoint for batch prediction (POST request)
|
54 |
+
@store_sales_api.post('/v1/salebatch')
|
55 |
+
def predict_store_sales_batch():
|
56 |
+
"""
|
57 |
+
Handles batch predictions for multiple stores.
|
58 |
+
Expects a CSV file with store details.
|
59 |
+
"""
|
60 |
+
# Get uploaded CSV file
|
61 |
+
file = request.files['file']
|
62 |
+
|
63 |
+
# Read CSV into DataFrame
|
64 |
+
input_data = pd.read_csv(file)
|
65 |
+
|
66 |
+
# Make predictions
|
67 |
+
predicted_sales = model.predict(input_data).tolist()
|
68 |
+
|
69 |
+
# Convert to float and round
|
70 |
+
predicted_sales = [round(float(sale), 2) for sale in predicted_sales]
|
71 |
+
|
72 |
+
# Use Store IDs if available
|
73 |
+
if 'Store_ID' in input_data.columns:
|
74 |
+
store_ids = input_data['Store_ID'].tolist()
|
75 |
+
else:
|
76 |
+
store_ids = list(range(1, len(predicted_sales)+1)) # Fallback index
|
77 |
+
|
78 |
+
# Create dictionary of predictions
|
79 |
+
output_dict = dict(zip(store_ids, predicted_sales))
|
80 |
+
|
81 |
+
# Return JSON
|
82 |
+
return jsonify(output_dict)
|
83 |
+
|
84 |
+
# Run Flask app
|
85 |
+
if __name__ == '__main__':
|
86 |
+
store_sales_api.run(debug=True)
|
87 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.2
|
2 |
+
numpy==2.0.2
|
3 |
+
scikit-learn==1.6.1
|
4 |
+
xgboost==2.1.4
|
5 |
+
joblib==1.4.2
|
6 |
+
Werkzeug==2.2.2
|
7 |
+
flask==2.2.2
|
8 |
+
gunicorn==20.1.0
|
9 |
+
requests==2.28.1
|
10 |
+
uvicorn[standard]
|
11 |
+
streamlit==1.43.2
|
superkart_sales_prediction_model_v1_0.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b56473693f512415425d9cc2eed86e49774a1a7cd8a83a664397058963daefdc
|
3 |
+
size 63812691
|