import numpy as np import logging import traceback from typing import Dict, Any, Optional, List from configuration_manager import ConfigurationManager class IndoorOutdoorClassifier: """ Classifies scenes as indoor or outdoor based on visual features and Places365 context.(判斷室內室外) 此class會融入PLACES365,使判斷更準確 This class implements sophisticated decision logic that combines multiple evidence sources including visual scene analysis, structural features, and external scene classification data to determine whether a scene is indoor or outdoor. """ def __init__(self, config_manager: ConfigurationManager): """ Initialize the indoor/outdoor classifier. Args: config_manager: Configuration manager instance for accessing thresholds and weights. """ self.config_manager = config_manager self.logger = self._setup_logger() # Internal threshold constants for Places365 confidence levels self.P365_HIGH_CONF_THRESHOLD = 0.65 self.P365_MODERATE_CONF_THRESHOLD = 0.4 # 以下是絕對室內/室外的基本情況 self.DEFINITELY_OUTDOOR_KEYWORDS_P365 = [ "street", "road", "highway", "park", "beach", "mountain", "forest", "field", "outdoor", "sky", "coast", "courtyard", "square", "plaza", "bridge", "parking_lot", "playground", "stadium", "construction_site", "river", "ocean", "desert", "garden", "trail", "intersection", "crosswalk", "sidewalk", "pathway", "avenue", "boulevard", "downtown", "city_center", "market_outdoor" ] self.DEFINITELY_INDOOR_KEYWORDS_P365 = [ "bedroom", "office", "kitchen", "library", "classroom", "conference_room", "living_room", "bathroom", "hospital", "hotel_room", "cabin", "interior", "museum", "gallery", "mall", "market_indoor", "basement", "corridor", "lobby", "restaurant_indoor", "bar_indoor", "shop_indoor", "gym_indoor" ] def _setup_logger(self) -> logging.Logger: """Set up logger for classification operations.""" logger = logging.getLogger(f"{__name__}.IndoorOutdoorClassifier") if not logger.handlers: handler = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.INFO) return logger def classify(self, features: Dict[str, Any], places365_info: Optional[Dict] = None) -> Dict[str, Any]: """ Classify scene as indoor or outdoor based on features and Places365 context. Args: features: Dictionary containing extracted image features. places365_info: Optional Places365 classification information. Returns: Dictionary containing classification results including decision, probability, feature contributions, and diagnostic information. """ try: self.logger.debug("Starting indoor/outdoor classification") # Initialize classification components visual_score = 0.0 feature_contributions = {} diagnostics = {} # Extract Places365 information p365_context = self._extract_places365_context(places365_info, diagnostics) # Compute visual evidence score visual_analysis = self._analyze_visual_evidence(features, diagnostics) visual_score = visual_analysis["visual_score"] feature_contributions.update(visual_analysis["contributions"]) # Incorporate Places365 influence p365_analysis = self._analyze_places365_influence( p365_context, visual_analysis.get("strong_sky_signal", False), diagnostics ) p365_influence_score = p365_analysis["influence_score"] if abs(p365_influence_score) > 0.01: feature_contributions["places365_influence_score"] = round(p365_influence_score, 2) # Calculate final score and probability final_indoor_score = visual_score + p365_influence_score classification_result = self._compute_final_classification( final_indoor_score, visual_score, p365_influence_score, diagnostics ) # Apply Places365 override if conditions are met override_result = self._apply_places365_override( classification_result, p365_context, diagnostics ) # Ensure default values for missing contributions self._ensure_default_contributions(feature_contributions) # 最終結果 result = { "is_indoor": override_result["is_indoor"], "indoor_probability": override_result["indoor_probability"], "indoor_score_raw": override_result["final_score"], "feature_contributions": feature_contributions, "diagnostics": diagnostics } self.logger.debug(f"Classification complete: indoor={result['is_indoor']}, " f"probability={result['indoor_probability']:.3f}") return result except Exception as e: self.logger.error(f"Error in indoor/outdoor classification: {str(e)}") self.logger.error(f"Traceback: {traceback.format_exc()}") return self._get_default_classification_result() def _extract_places365_context(self, places365_info: Optional[Dict], diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Extract and validate Places365 context information.""" context = { "mapped_scene": "unknown", "is_indoor_from_classification": None, "attributes": [], "confidence": 0.0, "is_indoor": None } if places365_info: context["mapped_scene"] = places365_info.get('mapped_scene_type', 'unknown').lower() context["attributes"] = [attr.lower() for attr in places365_info.get('attributes', [])] context["confidence"] = places365_info.get('confidence', 0.0) context["is_indoor_from_classification"] = places365_info.get('is_indoor_from_classification', None) context["is_indoor"] = places365_info.get('is_indoor', None) diagnostics["p365_context_received"] = ( f"P365 Scene: {context['mapped_scene']}, P365 SceneConf: {context['confidence']:.2f}, " f"P365 DirectIndoor: {context['is_indoor_from_classification']}, " f"P365 Attrs: {context['attributes']}" ) return context def _analyze_visual_evidence(self, features: Dict[str, Any], diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze visual evidence for indoor/outdoor classification.""" visual_score = 0.0 contributions = {} strong_sky_signal = False # Sky and openness analysis sky_analysis = self._analyze_sky_evidence(features, diagnostics) visual_score += sky_analysis["score"] if sky_analysis["score"] != 0: contributions["sky_openness_features_visual"] = round(sky_analysis["score"], 2) strong_sky_signal = sky_analysis["strong_signal"] # Enclosure and structural analysis enclosure_analysis = self._analyze_enclosure_evidence(features, strong_sky_signal, diagnostics) visual_score += enclosure_analysis["score"] if enclosure_analysis["score"] != 0: contributions["enclosure_features"] = round(enclosure_analysis["score"], 2) # Brightness uniformity analysis uniformity_analysis = self._analyze_brightness_uniformity(features, strong_sky_signal, diagnostics) visual_score += uniformity_analysis["score"] if uniformity_analysis["score"] != 0: contributions["brightness_uniformity_contribution"] = round(uniformity_analysis["score"], 2) # Light source analysis light_analysis = self._analyze_light_sources(features, strong_sky_signal, diagnostics) visual_score += light_analysis["score"] if light_analysis["score"] != 0: contributions["light_source_features"] = round(light_analysis["score"], 2) # Color atmosphere analysis atmosphere_analysis = self._analyze_color_atmosphere(features, strong_sky_signal, diagnostics) visual_score += atmosphere_analysis["score"] if atmosphere_analysis["score"] != 0: contributions["warm_atmosphere_indoor_visual_contrib"] = round(atmosphere_analysis["score"], 2) # Home environment pattern analysis home_analysis = self._analyze_home_environment_pattern(features, strong_sky_signal, diagnostics) visual_score += home_analysis["score"] if home_analysis["score"] != 0: contributions["home_environment_pattern_visual"] = round(home_analysis["score"], 2) # Aerial street pattern analysis aerial_analysis = self._analyze_aerial_street_pattern(features, strong_sky_signal, contributions, diagnostics) visual_score += aerial_analysis["score"] if aerial_analysis["score"] != 0: contributions["aerial_street_pattern_visual"] = round(aerial_analysis["score"], 2) diagnostics["visual_indoor_score_subtotal"] = round(visual_score, 3) return { "visual_score": visual_score, "contributions": contributions, "strong_sky_signal": strong_sky_signal } def _analyze_sky_evidence(self, features: Dict[str, Any], diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze sky-related evidence for outdoor classification.""" sky_evidence_score = 0.0 strong_sky_signal = False # Extract relevant features sky_blue_dominance = features.get("sky_region_blue_dominance", 0.0) sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0) texture_complexity = features.get("top_region_texture_complexity", 0.5) openness_top_edge = features.get("openness_top_edge", 0.5) # Get thresholds thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors # Strong blue sky signal if sky_blue_dominance > thresholds.sky_blue_dominance_thresh: sky_evidence_score -= weights.sky_blue_dominance_w * sky_blue_dominance diagnostics["sky_detection_reason_visual"] = f"Visual: Strong sky-like blue ({sky_blue_dominance:.2f})" strong_sky_signal = True # Bright top region with low texture elif (sky_brightness_ratio > getattr(thresholds, 'sky_brightness_ratio_strong_thresh', 1.35) and texture_complexity < getattr(thresholds, 'sky_texture_complexity_clear_thresh', 0.25)): outdoor_push = weights.sky_brightness_ratio_w * (sky_brightness_ratio - 1.0) sky_evidence_score -= outdoor_push sky_evidence_score -= weights.sky_texture_w diagnostics["sky_detection_reason_visual"] = ( f"Visual: Top brighter (ratio:{sky_brightness_ratio:.2f}) & low texture." ) strong_sky_signal = True # High top edge openness elif openness_top_edge > getattr(thresholds, 'openness_top_strong_thresh', 0.80): sky_evidence_score -= weights.openness_top_w * openness_top_edge diagnostics["sky_detection_reason_visual"] = ( f"Visual: Very high top edge openness ({openness_top_edge:.2f})." ) strong_sky_signal = True # Weak sky signal (cloudy conditions) elif (not strong_sky_signal and texture_complexity < getattr(thresholds, 'sky_texture_complexity_cloudy_thresh', 0.20) and sky_brightness_ratio > getattr(thresholds, 'sky_brightness_ratio_cloudy_thresh', 0.95)): sky_evidence_score -= weights.sky_texture_w * (1.0 - texture_complexity) * 0.5 diagnostics["sky_detection_reason_visual"] = ( f"Visual: Weak sky signal (low texture, brightish top: {texture_complexity:.2f}), less weight." ) if strong_sky_signal: diagnostics["strong_sky_signal_visual_detected"] = True return { "score": sky_evidence_score, "strong_signal": strong_sky_signal } def _analyze_enclosure_evidence(self, features: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze enclosure evidence for indoor classification.""" enclosure_score = 0.0 # Extract features ceiling_likelihood = features.get("ceiling_likelihood", 0.0) boundary_clarity = features.get("boundary_clarity", 0.0) texture_complexity = features.get("top_region_texture_complexity", 0.5) openness_top_edge = features.get("openness_top_edge", 0.5) # Get configuration thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors override_factors = self.config_manager.override_factors # Ceiling likelihood analysis if ceiling_likelihood > thresholds.ceiling_likelihood_thresh: current_ceiling_score = weights.ceiling_likelihood_w * ceiling_likelihood if strong_sky_signal: current_ceiling_score *= override_factors.sky_override_factor_ceiling enclosure_score += current_ceiling_score diagnostics["indoor_reason_ceiling_visual"] = ( f"Visual Ceiling: {ceiling_likelihood:.2f}, ScoreCont: {current_ceiling_score:.2f}" ) # Boundary clarity analysis if boundary_clarity > thresholds.boundary_clarity_thresh: current_boundary_score = weights.boundary_clarity_w * boundary_clarity if strong_sky_signal: current_boundary_score *= override_factors.sky_override_factor_boundary enclosure_score += current_boundary_score diagnostics["indoor_reason_boundary_visual"] = ( f"Visual Boundary: {boundary_clarity:.2f}, ScoreCont: {current_boundary_score:.2f}" ) # Complex urban top detection if (not strong_sky_signal and texture_complexity > 0.7 and openness_top_edge < 0.3 and ceiling_likelihood < 0.35): diagnostics["complex_urban_top_visual"] = True if boundary_clarity > 0.5: enclosure_score *= 0.5 diagnostics["reduced_enclosure_for_urban_top_visual"] = True return {"score": enclosure_score} def _analyze_brightness_uniformity(self, features: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze brightness uniformity patterns.""" uniformity_score = 0.0 # Calculate brightness uniformity brightness_std = features.get("brightness_std", 50.0) avg_brightness = features.get("avg_brightness", 100.0) brightness_uniformity = 1.0 - min(1.0, brightness_std / max(avg_brightness, 1e-5)) shadow_clarity = features.get("shadow_clarity_score", 0.5) # Get configuration thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors override_factors = self.config_manager.override_factors # High uniformity (indoor indicator) if brightness_uniformity > thresholds.brightness_uniformity_thresh_indoor: uniformity_score = weights.brightness_uniformity_w * brightness_uniformity if strong_sky_signal: uniformity_score *= override_factors.sky_override_factor_uniformity # Low uniformity (potential outdoor indicator) elif brightness_uniformity < thresholds.brightness_uniformity_thresh_outdoor: if shadow_clarity > 0.65: uniformity_score = -weights.brightness_non_uniformity_outdoor_w * (1.0 - brightness_uniformity) elif not strong_sky_signal: uniformity_score = weights.brightness_non_uniformity_indoor_penalty_w * (1.0 - brightness_uniformity) return {"score": uniformity_score} def _analyze_light_sources(self, features: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze artificial light source patterns.""" light_score = 0.0 # Extract light features indoor_light_score = features.get("indoor_light_score", 0.0) circular_light_count = features.get("circular_light_count", 0) bright_spot_count = features.get("bright_spot_count", 0) avg_brightness = features.get("avg_brightness", 100.0) gradient_ratio = features.get("gradient_ratio_vertical_horizontal", 1.0) edges_density = features.get("edges_density", 0.0) # Get configuration thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors override_factors = self.config_manager.override_factors # Circular lights detection if circular_light_count >= 1 and not strong_sky_signal: light_score += weights.circular_lights_w * circular_light_count # Indoor light score elif indoor_light_score > 0.55 and not strong_sky_signal: light_score += weights.indoor_light_score_w * indoor_light_score # Many bright spots in dim scenes elif (bright_spot_count > thresholds.many_bright_spots_thresh and avg_brightness < thresholds.dim_scene_for_spots_thresh and not strong_sky_signal): light_score += weights.many_bright_spots_indoor_w * min(bright_spot_count / 10.0, 1.5) # Street structure detection is_likely_street_structure = (0.7 < gradient_ratio < 1.5) and edges_density > 0.15 if is_likely_street_structure and bright_spot_count > 3 and not strong_sky_signal: light_score *= 0.2 diagnostics["street_lights_heuristic_visual"] = True elif strong_sky_signal: light_score *= override_factors.sky_override_factor_lights return {"score": light_score} def _analyze_color_atmosphere(self, features: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze color atmosphere patterns.""" atmosphere_score = 0.0 # Extract features color_atmosphere = features.get("color_atmosphere", "neutral") avg_brightness = features.get("avg_brightness", 100.0) avg_saturation = features.get("avg_saturation", 100.0) gradient_ratio = features.get("gradient_ratio_vertical_horizontal", 1.0) edges_density = features.get("edges_density", 0.0) indoor_light_score = features.get("indoor_light_score", 0.0) # Get configuration thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors # Warm atmosphere analysis if (color_atmosphere == "warm" and avg_brightness < thresholds.warm_indoor_max_brightness_thresh): # Check exclusion conditions is_likely_street_structure = (0.7 < gradient_ratio < 1.5) and edges_density > 0.15 is_complex_urban_top = diagnostics.get("complex_urban_top_visual", False) if (not strong_sky_signal and not is_complex_urban_top and not (is_likely_street_structure and avg_brightness > 80) and avg_saturation < 160): if indoor_light_score > 0.05: atmosphere_score = weights.warm_atmosphere_indoor_w return {"score": atmosphere_score} def _analyze_home_environment_pattern(self, features: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze home/residential environment patterns.""" home_score = 0.0 if strong_sky_signal: diagnostics["skipped_home_env_visual_due_to_sky"] = True return {"score": 0.0} # Calculate bedroom/home indicators bedroom_indicators = 0.0 brightness_uniformity = features.get("brightness_uniformity", 0.0) boundary_clarity = features.get("boundary_clarity", 0.0) ceiling_likelihood = features.get("ceiling_likelihood", 0.0) bright_spot_count = features.get("bright_spot_count", 0) circular_light_count = features.get("circular_light_count", 0) warm_ratio = features.get("warm_ratio", 0.0) avg_saturation = features.get("avg_saturation", 100.0) # Accumulate indicators if brightness_uniformity > 0.65 and boundary_clarity > 0.40: bedroom_indicators += 1.1 if ceiling_likelihood > 0.35 and (bright_spot_count > 0 or circular_light_count > 0): bedroom_indicators += 1.1 if warm_ratio > 0.55 and brightness_uniformity > 0.65: bedroom_indicators += 1.0 if brightness_uniformity > 0.70 and avg_saturation < 60: bedroom_indicators += 0.7 # Get configuration thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors # Apply scoring based on indicator strength if bedroom_indicators >= thresholds.home_pattern_thresh_strong: home_score = weights.home_env_strong_w elif bedroom_indicators >= thresholds.home_pattern_thresh_moderate: home_score = weights.home_env_moderate_w if bedroom_indicators > 0: diagnostics["home_environment_pattern_visual_indicators"] = round(bedroom_indicators, 1) return {"score": home_score} def _analyze_aerial_street_pattern(self, features: Dict[str, Any], strong_sky_signal: bool, contributions: Dict[str, float], diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze aerial view street patterns.""" aerial_score = 0.0 # Extract features sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0) texture_complexity = features.get("top_region_texture_complexity", 0.5) avg_brightness = features.get("avg_brightness", 100.0) # Get configuration thresholds = self.config_manager.indoor_outdoor_thresholds weights = self.config_manager.weighting_factors # Aerial street pattern detection if (sky_brightness_ratio < thresholds.aerial_top_dark_ratio_thresh and texture_complexity > thresholds.aerial_top_complex_thresh and avg_brightness > thresholds.aerial_min_avg_brightness_thresh and not strong_sky_signal): aerial_score = -weights.aerial_street_w diagnostics["aerial_street_pattern_visual_detected"] = True # Reduce enclosure features if aerial pattern detected if ("enclosure_features" in contributions and contributions["enclosure_features"] > 0): reduction_factor = self.config_manager.override_factors.aerial_enclosure_reduction_factor positive_enclosure_score = max(0, contributions["enclosure_features"]) reduction_amount = positive_enclosure_score * reduction_factor contributions["enclosure_features_reduced_by_aerial"] = round(-reduction_amount, 2) contributions["enclosure_features"] = round( contributions["enclosure_features"] - reduction_amount, 2 ) return {"score": aerial_score} def _analyze_places365_influence(self, p365_context: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Analyze Places365 influence on classification.""" p365_influence_score = 0.0 if not p365_context or p365_context["confidence"] < self.P365_MODERATE_CONF_THRESHOLD: return {"influence_score": 0.0} # Places365 direct classification influence if p365_context["is_indoor_from_classification"] is not None: p365_influence_score += self._compute_direct_classification_influence( p365_context, strong_sky_signal, diagnostics ) # Places365 scene context influence elif p365_context["confidence"] >= self.P365_MODERATE_CONF_THRESHOLD: p365_influence_score += self._compute_scene_context_influence( p365_context, strong_sky_signal, diagnostics ) # Places365 attributes influence if p365_context["attributes"] and p365_context["confidence"] > 0.5: p365_influence_score += self._compute_attributes_influence( p365_context, strong_sky_signal, diagnostics ) # High confidence street scene boost if (p365_context["confidence"] >= 0.85 and any(kw in p365_context["mapped_scene"] for kw in ["intersection", "crosswalk", "street", "road"])): additional_outdoor_push = -3.0 * p365_context["confidence"] p365_influence_score += additional_outdoor_push diagnostics["p365_street_scene_boost"] = ( f"Additional outdoor push: {additional_outdoor_push:.2f} for street scene: " f"{p365_context['mapped_scene']}" ) self.logger.debug(f"High confidence street scene detected - " f"{p365_context['mapped_scene']} with confidence {p365_context['confidence']:.3f}") return {"influence_score": p365_influence_score} def _compute_direct_classification_influence(self, p365_context: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> float: """Compute influence from Places365 direct indoor/outdoor classification.""" P365_DIRECT_INDOOR_WEIGHT = 3.5 P365_DIRECT_OUTDOOR_WEIGHT = 4.0 confidence = p365_context["confidence"] is_indoor = p365_context["is_indoor_from_classification"] mapped_scene = p365_context["mapped_scene"] if is_indoor is True: current_contrib = P365_DIRECT_INDOOR_WEIGHT * confidence diagnostics["p365_influence_source"] = ( f"P365_DirectIndoor(True,Conf:{confidence:.2f},Scene:{mapped_scene})" ) else: current_contrib = -P365_DIRECT_OUTDOOR_WEIGHT * confidence diagnostics["p365_influence_source"] = ( f"P365_DirectIndoor(False,Conf:{confidence:.2f},Scene:{mapped_scene})" ) # Apply sky override for indoor predictions if strong_sky_signal and current_contrib > 0: sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision current_contrib *= sky_override_factor diagnostics["p365_indoor_push_reduced_by_visual_sky"] = f"Reduced to {current_contrib:.2f}" return current_contrib def _compute_scene_context_influence(self, p365_context: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> float: """Compute influence from Places365 scene context.""" P365_SCENE_CONTEXT_INDOOR_WEIGHT = 2.0 P365_SCENE_CONTEXT_OUTDOOR_WEIGHT = 2.5 confidence = p365_context["confidence"] mapped_scene = p365_context["mapped_scene"] is_def_indoor = any(kw in mapped_scene for kw in self.DEFINITELY_INDOOR_KEYWORDS_P365) is_def_outdoor = any(kw in mapped_scene for kw in self.DEFINITELY_OUTDOOR_KEYWORDS_P365) current_contrib = 0.0 if is_def_indoor and not is_def_outdoor: current_contrib = P365_SCENE_CONTEXT_INDOOR_WEIGHT * confidence diagnostics["p365_influence_source"] = ( f"P365_SceneContext(Indoor: {mapped_scene}, Conf:{confidence:.2f})" ) elif is_def_outdoor and not is_def_indoor: current_contrib = -P365_SCENE_CONTEXT_OUTDOOR_WEIGHT * confidence diagnostics["p365_influence_source"] = ( f"P365_SceneContext(Outdoor: {mapped_scene}, Conf:{confidence:.2f})" ) # Apply sky override for indoor predictions if strong_sky_signal and current_contrib > 0: sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision current_contrib *= sky_override_factor diagnostics["p365_context_indoor_push_reduced_by_visual_sky"] = f"Reduced to {current_contrib:.2f}" return current_contrib def _compute_attributes_influence(self, p365_context: Dict[str, Any], strong_sky_signal: bool, diagnostics: Dict[str, Any]) -> float: """Compute influence from Places365 attributes.""" P365_ATTRIBUTE_INDOOR_WEIGHT = 1.0 P365_ATTRIBUTE_OUTDOOR_WEIGHT = 1.5 confidence = p365_context["confidence"] attributes = p365_context["attributes"] attr_contrib = 0.0 if "indoor" in attributes and "outdoor" not in attributes: attr_contrib += P365_ATTRIBUTE_INDOOR_WEIGHT * (confidence * 0.5) diagnostics["p365_attr_influence"] = f"+{attr_contrib:.2f} (indoor attr)" elif "outdoor" in attributes and "indoor" not in attributes: attr_contrib -= P365_ATTRIBUTE_OUTDOOR_WEIGHT * (confidence * 0.5) diagnostics["p365_attr_influence"] = f"{attr_contrib:.2f} (outdoor attr)" # Apply sky override for indoor attributes if strong_sky_signal and attr_contrib > 0: sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision attr_contrib *= sky_override_factor return attr_contrib def _compute_final_classification(self, final_indoor_score: float, visual_score: float, p365_influence_score: float, diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Compute final classification probability and decision.""" # Record score breakdown diagnostics["final_indoor_score_value"] = round(final_indoor_score, 3) diagnostics["final_score_breakdown"] = ( f"VisualScore: {visual_score:.2f}, P365Influence: {p365_influence_score:.2f}" ) # Apply sigmoid transformation sigmoid_scale = self.config_manager.algorithm_parameters.indoor_score_sigmoid_scale indoor_probability = 1 / (1 + np.exp(-final_indoor_score * sigmoid_scale)) # Make decision decision_threshold = self.config_manager.algorithm_parameters.indoor_decision_threshold is_indoor = indoor_probability > decision_threshold return { "is_indoor": is_indoor, "indoor_probability": indoor_probability, "final_score": final_indoor_score } def _apply_places365_override(self, classification_result: Dict[str, Any], p365_context: Dict[str, Any], diagnostics: Dict[str, Any]) -> Dict[str, Any]: """Apply Places365 high-confidence override if conditions are met.""" is_indoor = classification_result["is_indoor"] indoor_probability = classification_result["indoor_probability"] final_score = classification_result["final_score"] # Check for override conditions if not p365_context or p365_context["confidence"] < 0.5: diagnostics["final_indoor_probability_calculated"] = round(indoor_probability, 3) diagnostics["final_is_indoor_decision"] = bool(is_indoor) return classification_result p365_is_indoor_decision = p365_context.get("is_indoor", None) confidence = p365_context["confidence"] self.logger.debug(f"Override check: is_indoor={is_indoor}, p365_conf={confidence}, " f"p365_raw_is_indoor={p365_is_indoor_decision}") # Apply override for high confidence Places365 decisions if p365_is_indoor_decision is not None: if p365_is_indoor_decision == False: self.logger.debug(f"Applying outdoor override. Original: {is_indoor}") original_decision = f"Indoor:{is_indoor}, Prob:{indoor_probability:.3f}, Score:{final_score:.2f}" is_indoor = False indoor_probability = 0.02 final_score = -8.0 diagnostics["p365_force_override_applied"] = ( f"P365 FORCED OUTDOOR (is_indoor: {p365_is_indoor_decision}, Conf: {confidence:.3f})" ) diagnostics["p365_override_original_decision"] = original_decision self.logger.info(f"Places365 FORCED OUTDOOR override applied. New is_indoor: {is_indoor}") elif p365_is_indoor_decision == True: self.logger.debug(f"Applying indoor override. Original: {is_indoor}") original_decision = f"Indoor:{is_indoor}, Prob:{indoor_probability:.3f}, Score:{final_score:.2f}" is_indoor = True indoor_probability = 0.98 final_score = 8.0 diagnostics["p365_force_override_applied"] = ( f"P365 FORCED INDOOR (is_indoor: {p365_is_indoor_decision}, Conf: {confidence:.3f})" ) diagnostics["p365_override_original_decision"] = original_decision self.logger.info(f"Places365 FORCED INDOOR override applied. New is_indoor: {is_indoor}") # Record final values diagnostics["final_indoor_probability_calculated"] = round(indoor_probability, 3) diagnostics["final_is_indoor_decision"] = bool(is_indoor) self.logger.debug(f"Final classification: is_indoor={is_indoor}, score={final_score}, prob={indoor_probability}") return { "is_indoor": is_indoor, "indoor_probability": indoor_probability, "final_score": final_score } def _ensure_default_contributions(self, feature_contributions: Dict[str, float]) -> None: """Ensure all expected feature contribution keys have default values.""" default_keys = [ "sky_openness_features", "enclosure_features", "brightness_uniformity_contribution", "light_source_features" ] for key in default_keys: if key not in feature_contributions: feature_contributions[key] = 0.0 def _get_default_classification_result(self) -> Dict[str, Any]: """Return default classification result in case of errors.""" return { "is_indoor": False, "indoor_probability": 0.5, "indoor_score_raw": 0.0, "feature_contributions": { "sky_openness_features": 0.0, "enclosure_features": 0.0, "brightness_uniformity_contribution": 0.0, "light_source_features": 0.0 }, "diagnostics": { "error": "Classification failed, using default values" } }