VisionScout / object_description_generator.py
DawnC's picture
Upload 14 files
12d9ea9 verified
import re
import logging
import traceback
from typing import Dict, List, Tuple, Optional, Any
import numpy as np
from prominence_calculator import ProminenceCalculator
from spatial_location_handler import SpatialLocationHandler
from text_optimizer import TextOptimizer
from object_group_processor import ObjectGroupProcessor
class ObjectDescriptionError(Exception):
"""物件描述生成過程中的自定義異常"""
pass
class ObjectDescriptionGenerator:
"""
物件描述生成器 - 負責將檢測到的物件轉換為自然語言描述
匯總於EnhancedSceneDescriber
該類別處理物件相關的所有描述生成邏輯,包括重要物件的辨識、
空間位置描述、物件列表格式化以及描述文本的優化。
作為 Facade 模式的實現,協調四個專門的子組件來完成複雜的描述生成任務。
"""
def __init__(self,
min_prominence_score: float = 0.1,
max_categories_to_return: int = 5,
max_total_objects: int = 7,
confidence_threshold_for_description: float = 0.25,
region_analyzer: Optional[Any] = None):
"""
初始化物件描述生成器
Args:
min_prominence_score: 物件顯著性的最低分數閾值
max_categories_to_return: 返回的物件類別最大數量
max_total_objects: 返回的物件總數上限
confidence_threshold_for_description: 用於描述的置信度閾值
region_analyzer: 可選的RegionAnalyzer實例
"""
self.logger = logging.getLogger(self.__class__.__name__)
self.min_prominence_score = min_prominence_score
self.max_categories_to_return = max_categories_to_return
self.max_total_objects = max_total_objects
self.confidence_threshold_for_description = confidence_threshold_for_description
self.region_analyzer = region_analyzer
# 初始化子組件
self.prominence_calculator = ProminenceCalculator(
min_prominence_score=self.min_prominence_score
)
self.spatial_handler = SpatialLocationHandler(
region_analyzer=self.region_analyzer
)
self.text_optimizer = TextOptimizer()
self.object_group_processor = ObjectGroupProcessor(
confidence_threshold_for_description=self.confidence_threshold_for_description,
spatial_handler=self.spatial_handler,
text_optimizer=self.text_optimizer
)
self.logger.info("ObjectDescriptionGenerator initialized with prominence_score=%.2f, "
"max_categories=%d, max_objects=%d, confidence_threshold=%.2f",
min_prominence_score, max_categories_to_return,
max_total_objects, confidence_threshold_for_description)
def get_prominent_objects(self, detected_objects: List[Dict],
min_prominence_score: float = 0.5,
max_categories_to_return: Optional[int] = None) -> List[Dict]:
"""
獲取最重要的物件,基於置信度、大小和位置計算重要性評分
Args:
detected_objects: 檢測到的物件列表
min_prominence_score: 最小重要性分數閾值,範圍 0.0-1.0
max_categories_to_return: 可選的最大返回類別數量限制
Returns:
List[Dict]: 按重要性排序的物件列表
"""
return self.prominence_calculator.filter_prominent_objects(
detected_objects=detected_objects,
min_prominence_score=min_prominence_score,
max_categories_to_return=max_categories_to_return
)
def set_region_analyzer(self, region_analyzer: Any) -> None:
"""
設置RegionAnalyzer,用於標準化空間描述生成
Args:
region_analyzer: RegionAnalyzer實例
"""
try:
self.region_analyzer = region_analyzer
self.spatial_handler.set_region_analyzer(region_analyzer)
self.logger.info("RegionAnalyzer instance set for ObjectDescriptionGenerator")
except Exception as e:
self.logger.warning(f"Error setting RegionAnalyzer: {str(e)}")
def format_object_list_for_description(self,
objects: List[Dict],
use_indefinite_article_for_one: bool = False,
count_threshold_for_generalization: int = -1,
max_types_to_list: int = 5) -> str:
"""
將物件列表格式化為人類可讀的字符串,包含計數信息
Args:
objects: 物件字典列表,每個應包含 'class_name'
use_indefinite_article_for_one: 單個物件是否使用 "a/an",否則使用 "one"
count_threshold_for_generalization: 超過此計數時使用通用術語,-1表示精確計數
max_types_to_list: 列表中包含的不同物件類型最大數量
Returns:
str: 格式化的物件描述字符串
"""
return self.text_optimizer.format_object_list_for_description(
objects=objects,
use_indefinite_article_for_one=use_indefinite_article_for_one,
count_threshold_for_generalization=count_threshold_for_generalization,
max_types_to_list=max_types_to_list
)
def get_spatial_description(self, obj: Dict, image_width: Optional[int] = None,
image_height: Optional[int] = None,
region_analyzer: Optional[Any] = None) -> str:
"""
為物件生成空間位置描述
Args:
obj: 物件字典
image_width: 可選的圖像寬度
image_height: 可選的圖像高度
region_analyzer: 可選的RegionAnalyzer實例,用於生成標準化描述
Returns:
str: 空間描述字符串,空值region時返回空字串
"""
return self.spatial_handler.generate_spatial_description(
obj=obj,
image_width=image_width,
image_height=image_height,
region_analyzer=region_analyzer
)
def optimize_object_description(self, description: str) -> str:
"""
優化物件描述文本,消除多餘重複並改善表達流暢度
Args:
description: 原始的場景描述文本,可能包含重複或冗餘的表達
Returns:
str: 經過優化清理的描述文本,如果處理失敗則返回原始文本
"""
return self.text_optimizer.optimize_object_description(description)
def generate_dynamic_everyday_description(self,
detected_objects: List[Dict],
lighting_info: Optional[Dict] = None,
viewpoint: str = "eye_level",
spatial_analysis: Optional[Dict] = None,
image_dimensions: Optional[Tuple[int, int]] = None,
places365_info: Optional[Dict] = None,
object_statistics: Optional[Dict] = None) -> str:
"""
為日常場景動態生成描述,基於所有相關的檢測物件、計數和上下文
Args:
detected_objects: 檢測到的物件列表
lighting_info: 照明信息
viewpoint: 視角類型
spatial_analysis: 空間分析結果
image_dimensions: 圖像尺寸
places365_info: Places365場景分類信息
object_statistics: 物件統計信息
Returns:
str: 動態生成的場景描述
"""
try:
description_segments = []
image_width, image_height = image_dimensions if image_dimensions else (None, None)
scene_type = places365_info.get("scene", "") if places365_info else ""
self.logger.debug(f"Generating dynamic description for {len(detected_objects)} objects, "
f"viewpoint: {viewpoint}, lighting: {lighting_info is not None}")
# 1. 整體氛圍(照明和視角)- 移除室內外標籤
ambiance_parts = []
if lighting_info:
time_of_day = lighting_info.get("time_of_day", "unknown lighting")
is_indoor = lighting_info.get("is_indoor")
# 直接描述照明條件,不加入室內外標籤
readable_lighting = f"{time_of_day.replace('_', ' ')} lighting conditions"
# 根據室內外環境調整描述但不直接標明
if is_indoor is True:
ambiance_statement = f"The scene features {readable_lighting} characteristic of an interior space."
elif is_indoor is False:
ambiance_statement = f"The scene displays {readable_lighting} typical of an outdoor environment."
else:
ambiance_statement = f"The scene presents {readable_lighting}."
ambiance_parts.append(ambiance_statement)
if viewpoint and viewpoint != "eye_level":
if not ambiance_parts:
ambiance_parts.append(f"From {viewpoint.replace('_', ' ')}, the general layout of the scene is observed.")
else:
ambiance_parts[-1] = ambiance_parts[-1].rstrip('.') + f", viewed from {viewpoint.replace('_', ' ')}."
if ambiance_parts:
description_segments.append(" ".join(ambiance_parts))
# 2. 描述所有檢測到的物件,按類別分組,使用準確計數和位置
if not detected_objects:
if not description_segments:
description_segments.append("A general scene is visible, but no specific objects were clearly identified.")
else:
description_segments.append("Within this setting, no specific objects were clearly identified.")
else:
# 使用置信度過濾
confident_objects = [obj for obj in detected_objects
if obj.get("confidence", 0) >= self.confidence_threshold_for_description]
print(f"DEBUG: After confidence filtering (threshold={self.confidence_threshold_for_description}):")
for class_name in ["car", "traffic light", "person", "handbag"]:
class_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name]
print(f"DEBUG: {class_name}: {len(class_objects)} confident objects")
if not confident_objects:
no_confident_obj_msg = "While some elements might be present, no objects were identified with sufficient confidence for a detailed description."
if not description_segments:
description_segments.append(no_confident_obj_msg)
else:
description_segments.append(no_confident_obj_msg.lower().capitalize())
else:
# 使用 ObjectGroupProcessor 處理物件分組和排序
objects_by_class = self.object_group_processor.group_objects_by_class(
confident_objects, object_statistics
)
if not objects_by_class:
description_segments.append("No common objects were confidently identified for detailed description.")
else:
# 移除重複物件
deduplicated_objects_by_class = self.object_group_processor.remove_duplicate_objects(
objects_by_class
)
# 排序物件組
sorted_object_groups = self.object_group_processor.sort_object_groups(
deduplicated_objects_by_class
)
# 生成物件描述子句
object_clauses = self.object_group_processor.generate_object_clauses(
sorted_object_groups, object_statistics, scene_type,
image_width, image_height, self.region_analyzer
)
if object_clauses:
if not description_segments:
if object_clauses:
first_clause = object_clauses.pop(0)
description_segments.append(first_clause + ".")
else:
if object_clauses:
description_segments.append("The scene features:")
if object_clauses:
joined_object_clauses = ". ".join(object_clauses)
if joined_object_clauses and not joined_object_clauses.endswith("."):
joined_object_clauses += "."
description_segments.append(joined_object_clauses)
elif not description_segments:
return "The image depicts a scene, but specific objects could not be described with confidence or detail."
# 最終組裝和格式化
raw_description = ""
for i, segment in enumerate(filter(None, description_segments)):
segment = segment.strip()
if not segment:
continue
if not raw_description:
raw_description = segment
else:
if not raw_description.endswith(('.', '!', '?')):
raw_description += "."
raw_description += " " + (segment[0].upper() + segment[1:] if len(segment) > 1 else segment.upper())
if raw_description and not raw_description.endswith(('.', '!', '?')):
raw_description += "."
# 移除重複性和不適當的描述詞彙
raw_description = self.text_optimizer.remove_repetitive_descriptors(raw_description)
if not raw_description or len(raw_description.strip()) < 20:
if 'confident_objects' in locals() and confident_objects:
return "The scene contains several detected objects, but a detailed textual description could not be fully constructed."
else:
return "A general scene is depicted with no objects identified with high confidence."
return raw_description
except Exception as e:
error_msg = f"Error generating dynamic everyday description: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
raise ObjectDescriptionError(error_msg) from e
def generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str:
"""
當模板不可用時生成基本詳細信息
Args:
scene_type: 識別的場景類型
detected_objects: 檢測到的物件列表
Returns:
str: 基本場景詳細信息
"""
try:
# 處理特定場景類型的自定義邏輯
if scene_type == "living_room":
tv_objs = [obj for obj in detected_objects if obj.get("class_id") == 62] # TV
sofa_objs = [obj for obj in detected_objects if obj.get("class_id") == 57] # Sofa
if tv_objs and sofa_objs:
tv_region = tv_objs[0].get("region", "center")
sofa_region = sofa_objs[0].get("region", "center")
arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, "
arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. "
return f"{arrangement}This appears to be a space designed for relaxation and entertainment."
elif scene_type == "bedroom":
bed_objs = [obj for obj in detected_objects if obj.get("class_id") == 59] # Bed
if bed_objs:
bed_region = bed_objs[0].get("region", "center")
extra_items = []
for obj in detected_objects:
if obj.get("class_id") == 74: # Clock
extra_items.append("clock")
elif obj.get("class_id") == 73: # Book
extra_items.append("book")
extras = ""
if extra_items:
extras = f" There is also a {' and a '.join(extra_items)} visible."
return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}"
elif scene_type in ["dining_area", "kitchen"]:
# 計算食物和餐飲相關物品
food_items = []
for obj in detected_objects:
if obj.get("class_id") in [39, 41, 42, 43, 44, 45]: # 廚房物品
food_items.append(obj.get("class_name", "kitchen item"))
food_str = ""
if food_items:
unique_items = list(set(food_items))
if len(unique_items) <= 3:
food_str = f" with {', '.join(unique_items)}"
else:
food_str = f" with {', '.join(unique_items[:3])} and other items"
return f"{food_str}."
elif scene_type == "city_street":
# 計算人員和車輛
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
vehicle_count = len([obj for obj in detected_objects
if obj.get("class_id") in [1, 2, 3, 5, 7]]) # Bicycle, car, motorbike, bus, truck
traffic_desc = ""
if people_count > 0 and vehicle_count > 0:
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and "
traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
elif people_count > 0:
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}"
elif vehicle_count > 0:
traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
return f"{traffic_desc}."
elif scene_type == "asian_commercial_street":
# 尋找關鍵城市元素
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
vehicle_count = len([obj for obj in detected_objects if obj.get("class_id") in [1, 2, 3]])
# 分析行人分布
people_positions = []
for obj in detected_objects:
if obj.get("class_id") == 0: # Person
people_positions.append(obj.get("normalized_center", (0.5, 0.5)))
# 檢查人員是否沿線分布(表示步行路徑)
structured_path = False
if len(people_positions) >= 3:
# 簡化檢查 - 查看多個人員的y坐標是否相似
y_coords = [pos[1] for pos in people_positions]
y_mean = sum(y_coords) / len(y_coords)
y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords)
if y_variance < 0.05: # 低變異數表示線性排列
structured_path = True
street_desc = "A commercial street with "
if people_count > 0:
street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}"
if vehicle_count > 0:
street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
elif vehicle_count > 0:
street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
else:
street_desc += "various commercial elements"
if structured_path:
street_desc += ". The pedestrians appear to be following a defined walking path"
# 添加文化元素
street_desc += ". The signage and architectural elements suggest an Asian urban setting."
return street_desc
# 默認通用描述
return "The scene contains various elements characteristic of this environment."
except Exception as e:
self.logger.warning(f"Error generating basic details for scene_type '{scene_type}': {str(e)}")
return "The scene contains various elements characteristic of this environment."
def generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str:
"""
為模板佔位符生成內容
Args:
placeholder: 模板佔位符
detected_objects: 檢測到的物件列表
scene_type: 場景類型
Returns:
str: 生成的佔位符內容
"""
try:
# 處理不同類型的佔位符與自定義邏輯
if placeholder == "furniture":
# 提取家具物品
furniture_ids = [56, 57, 58, 59, 60, 61] # 家具類別ID示例
furniture_objects = [obj for obj in detected_objects if obj.get("class_id") in furniture_ids]
if furniture_objects:
furniture_names = []
for obj in furniture_objects[:3]:
raw_name = obj.get("class_name", "furniture")
normalized_name = self.text_optimizer.normalize_object_class_name(raw_name)
furniture_names.append(normalized_name)
unique_names = list(set(furniture_names))
if len(unique_names) == 1:
return unique_names[0]
elif len(unique_names) == 2:
return f"{unique_names[0]} and {unique_names[1]}"
else:
return ", ".join(unique_names[:-1]) + f", and {unique_names[-1]}"
return "various furniture items"
elif placeholder == "electronics":
# 提取電子物品
electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # 電子設備類別ID示例
electronics_objects = [obj for obj in detected_objects if obj.get("class_id") in electronics_ids]
if electronics_objects:
electronics_names = [obj.get("class_name", "electronic device") for obj in electronics_objects[:3]]
return ", ".join(set(electronics_names))
return "electronic devices"
elif placeholder == "people_count":
# 計算人數
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
if people_count == 0:
return "no people"
elif people_count == 1:
return "one person"
elif people_count < 5:
return f"{people_count} people"
else:
return "several people"
elif placeholder == "seating":
# 提取座位物品
seating_ids = [56, 57] # chair, sofa
seating_objects = [obj for obj in detected_objects if obj.get("class_id") in seating_ids]
if seating_objects:
seating_names = [obj.get("class_name", "seating") for obj in seating_objects[:2]]
return ", ".join(set(seating_names))
return "seating arrangements"
# 默認情況 - 空字符串
return ""
except Exception as e:
self.logger.warning(f"Error generating placeholder content for '{placeholder}': {str(e)}")
return ""
def describe_functional_zones(self, functional_zones: Dict) -> str:
"""
生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題
Args:
functional_zones: 識別出的功能區域字典
Returns:
str: 功能區域描述
"""
try:
if not functional_zones:
return ""
# 處理不同類型的 functional_zones 參數
if isinstance(functional_zones, list):
# 如果是列表,轉換為字典格式
zones_dict = {}
for i, zone in enumerate(functional_zones):
if isinstance(zone, dict) and 'name' in zone:
zone_name = self._normalize_zone_name(zone['name'])
else:
zone_name = f"functional area {i+1}"
zones_dict[zone_name] = zone if isinstance(zone, dict) else {"description": str(zone)}
functional_zones = zones_dict
elif not isinstance(functional_zones, dict):
return ""
# 標準化所有區域鍵名,移除內部標識符格式
normalized_zones = {}
for zone_key, zone_data in functional_zones.items():
normalized_key = self._normalize_zone_name(zone_key)
normalized_zones[normalized_key] = zone_data
functional_zones = normalized_zones
# 計算場景中的總人數
total_people_count = 0
people_by_zone = {}
# 計算每個區域的人數並累計總人數
for zone_name, zone_info in functional_zones.items():
if "objects" in zone_info:
zone_people_count = zone_info["objects"].count("person")
people_by_zone[zone_name] = zone_people_count
total_people_count += zone_people_count
# 分類區域為行人區域和其他區域
pedestrian_zones = []
other_zones = []
for zone_name, zone_info in functional_zones.items():
# 檢查是否是行人相關區域
if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]):
pedestrian_zones.append((zone_name, zone_info))
else:
other_zones.append((zone_name, zone_info))
# 獲取最重要的行人區域和其他區域
main_pedestrian_zones = sorted(pedestrian_zones,
key=lambda z: people_by_zone.get(z[0], 0),
reverse=True)[:1] # 最多1個主要行人區域
top_other_zones = sorted(other_zones,
key=lambda z: len(z[1].get("objects", [])),
reverse=True)[:2] # 最多2個其他區域
# 合併區域
top_zones = main_pedestrian_zones + top_other_zones
if not top_zones:
return ""
# 生成匯總描述
summary = ""
max_mentioned_people = 0 # 追蹤已經提到的最大人數
# 如果總人數顯著且還沒在主描述中提到,添加總人數描述
if total_people_count > 5:
summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). "
max_mentioned_people = total_people_count # 更新已提到的最大人數
# 處理每個區域的描述,確保人數信息的一致性
processed_zones = []
for zone_name, zone_info in top_zones:
zone_desc = zone_info.get("description", "a functional zone")
zone_people_count = people_by_zone.get(zone_name, 0)
# 檢查描述中是否包含人數資訊
contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower())
# 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述
if contains_people_info and zone_people_count < max_mentioned_people:
parts = zone_desc.split("with")
if len(parts) > 1:
# 移除人數部分
zone_desc = parts[0].strip() + " area"
processed_zones.append((zone_name, {"description": zone_desc}))
# 根據處理後的區域數量生成最終描述
final_desc = ""
if len(processed_zones) == 1:
_, zone_info = processed_zones[0]
zone_desc = zone_info["description"]
final_desc = summary + f"The scene includes {zone_desc}."
elif len(processed_zones) == 2:
_, zone1_info = processed_zones[0]
_, zone2_info = processed_zones[1]
zone1_desc = zone1_info["description"]
zone2_desc = zone2_info["description"]
final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}."
else:
zones_desc = ["The scene contains multiple functional areas including"]
zone_descriptions = [z[1]["description"] for z in processed_zones]
# 格式化最終的多區域描述
if len(zone_descriptions) == 3:
formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}"
else:
formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}"
final_desc = summary + f"{zones_desc[0]} {formatted_desc}."
return self.optimize_object_description(final_desc)
except Exception as e:
self.logger.warning(f"Error describing functional zones: {str(e)}")
return ""
def _normalize_zone_name(self, zone_name: str) -> str:
"""
將內部區域鍵名標準化為自然語言描述
Args:
zone_name: 原始區域名稱
Returns:
str: 標準化後的區域名稱
"""
try:
if not zone_name or not isinstance(zone_name, str):
return "functional area"
# 移除數字後綴(如 crossing_zone_1 -> crossing_zone)
base_name = re.sub(r'_\d+$', '', zone_name)
# 將下劃線替換為空格
normalized = base_name.replace('_', ' ')
# 標準化常見的區域類型名稱
zone_type_mapping = {
'crossing zone': 'pedestrian crossing area',
'vehicle zone': 'vehicle movement area',
'pedestrian zone': 'pedestrian activity area',
'traffic zone': 'traffic flow area',
'waiting zone': 'waiting area',
'seating zone': 'seating area',
'dining zone': 'dining area',
'furniture zone': 'furniture arrangement area',
'electronics zone': 'electronics area',
'people zone': 'social activity area',
'functional area': 'activity area'
}
# 檢查是否有對應的標準化名稱
for pattern, replacement in zone_type_mapping.items():
if pattern in normalized.lower():
return replacement
# 如果沒有特定映射,使用通用格式
if 'zone' in normalized.lower():
normalized = normalized.replace('zone', 'area')
elif not any(keyword in normalized.lower() for keyword in ['area', 'space', 'region']):
normalized += ' area'
return normalized.strip()
except Exception as e:
self.logger.warning(f"Error normalizing zone name '{zone_name}': {str(e)}")
return "activity area"
def get_configuration(self) -> Dict[str, Any]:
"""
獲取當前配置參數
Returns:
Dict[str, Any]: 配置參數字典
"""
return {
"min_prominence_score": self.min_prominence_score,
"max_categories_to_return": self.max_categories_to_return,
"max_total_objects": self.max_total_objects,
"confidence_threshold_for_description": self.confidence_threshold_for_description
}
def update_configuration(self, **kwargs):
"""
更新配置參數
Args:
**kwargs: 要更新的配置參數
"""
try:
for key, value in kwargs.items():
if hasattr(self, key):
old_value = getattr(self, key)
setattr(self, key, value)
self.logger.info(f"Updated {key}: {old_value} -> {value}")
# 同步更新子組件的配置
if key == "min_prominence_score" and hasattr(self, 'prominence_calculator'):
self.prominence_calculator.min_prominence_score = value
elif key == "confidence_threshold_for_description" and hasattr(self, 'object_group_processor'):
self.object_group_processor.confidence_threshold_for_description = value
else:
self.logger.warning(f"Unknown configuration parameter: {key}")
except Exception as e:
self.logger.error(f"Error updating configuration: {str(e)}")
raise ObjectDescriptionError(f"Failed to update configuration: {str(e)}") from e