Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,614 +0,0 @@
|
|
1 |
-
|
2 |
-
import spaces
|
3 |
-
|
4 |
-
# Standard library imports
|
5 |
-
import logging
|
6 |
-
import os
|
7 |
-
import tempfile
|
8 |
-
from typing import List, Dict, Any
|
9 |
-
from pathlib import Path
|
10 |
-
|
11 |
-
# Third-party imports
|
12 |
-
import gradio as gr
|
13 |
-
import torch
|
14 |
-
import pandas as pd
|
15 |
-
import numpy as np
|
16 |
-
import requests
|
17 |
-
from bs4 import BeautifulSoup
|
18 |
-
import whisper
|
19 |
-
import yt_dlp
|
20 |
-
|
21 |
-
# Document processing imports
|
22 |
-
import fitz # PyMuPDF
|
23 |
-
from docx import Document
|
24 |
-
from pydub import AudioSegment
|
25 |
-
from moviepy.editor import VideoFileClip
|
26 |
-
|
27 |
-
# Hugging Face imports
|
28 |
-
from transformers import (
|
29 |
-
pipeline,
|
30 |
-
AutoModelForCausalLM,
|
31 |
-
AutoTokenizer
|
32 |
-
)
|
33 |
-
|
34 |
-
# Configure logging
|
35 |
-
logging.basicConfig(
|
36 |
-
level=logging.INFO,
|
37 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
38 |
-
)
|
39 |
-
logger = logging.getLogger(__name__)
|
40 |
-
|
41 |
-
# Environment variables
|
42 |
-
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
43 |
-
if not HUGGINGFACE_TOKEN:
|
44 |
-
logger.error("HUGGINGFACE_TOKEN environment variable not set")
|
45 |
-
raise ValueError("Please set the HUGGINGFACE_TOKEN environment variable")
|
46 |
-
|
47 |
-
# Global variables for models
|
48 |
-
tokenizer = None
|
49 |
-
model = None
|
50 |
-
news_generator = None
|
51 |
-
whisper_model = None
|
52 |
-
|
53 |
-
def custom_css():
|
54 |
-
return """
|
55 |
-
#main-container {
|
56 |
-
max-width: 1200px;
|
57 |
-
margin: 0 auto;
|
58 |
-
padding: 20px;
|
59 |
-
}
|
60 |
-
|
61 |
-
.main-title {
|
62 |
-
text-align: center;
|
63 |
-
padding: 20px 0;
|
64 |
-
margin-bottom: 30px;
|
65 |
-
border-bottom: 2px solid #eee;
|
66 |
-
}
|
67 |
-
|
68 |
-
.section-title {
|
69 |
-
font-size: 1.2em;
|
70 |
-
margin-bottom: 15px;
|
71 |
-
color: #2c3e50;
|
72 |
-
}
|
73 |
-
|
74 |
-
.input-container {
|
75 |
-
background: #f8f9fa;
|
76 |
-
padding: 20px;
|
77 |
-
border-radius: 10px;
|
78 |
-
margin-bottom: 20px;
|
79 |
-
}
|
80 |
-
|
81 |
-
.source-tab {
|
82 |
-
padding: 15px;
|
83 |
-
background: white;
|
84 |
-
border-radius: 8px;
|
85 |
-
margin: 10px 0;
|
86 |
-
}
|
87 |
-
|
88 |
-
.generate-btn {
|
89 |
-
background: #2c3e50 !important;
|
90 |
-
color: white !important;
|
91 |
-
padding: 12px 24px !important;
|
92 |
-
}
|
93 |
-
|
94 |
-
.output-container {
|
95 |
-
background: #f8f9fa;
|
96 |
-
padding: 20px;
|
97 |
-
border-radius: 10px;
|
98 |
-
margin-top: 20px;
|
99 |
-
}
|
100 |
-
"""
|
101 |
-
|
102 |
-
@spaces.GPU(duration=60)
|
103 |
-
def initialize_models():
|
104 |
-
"""Initialize models with Zero GPU optimizations"""
|
105 |
-
global tokenizer, model, news_generator, whisper_model
|
106 |
-
|
107 |
-
try:
|
108 |
-
logger.info("Starting model initialization...")
|
109 |
-
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
110 |
-
|
111 |
-
# Load tokenizer
|
112 |
-
logger.info("Loading tokenizer...")
|
113 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
114 |
-
model_name,
|
115 |
-
token=HUGGINGFACE_TOKEN
|
116 |
-
)
|
117 |
-
tokenizer.pad_token = tokenizer.eos_token
|
118 |
-
|
119 |
-
# Load model
|
120 |
-
logger.info("Loading model...")
|
121 |
-
model = AutoModelForCausalLM.from_pretrained(
|
122 |
-
model_name,
|
123 |
-
token=HUGGINGFACE_TOKEN,
|
124 |
-
torch_dtype=torch.bfloat16,
|
125 |
-
device_map="auto",
|
126 |
-
low_cpu_mem_usage=True
|
127 |
-
)
|
128 |
-
|
129 |
-
# Create pipeline
|
130 |
-
logger.info("Creating pipeline...")
|
131 |
-
news_generator = pipeline(
|
132 |
-
"text-generation",
|
133 |
-
model=model,
|
134 |
-
tokenizer=tokenizer,
|
135 |
-
device_map="auto",
|
136 |
-
torch_dtype=torch.bfloat16,
|
137 |
-
max_length=2048,
|
138 |
-
do_sample=True,
|
139 |
-
temperature=0.7,
|
140 |
-
top_p=0.95,
|
141 |
-
repetition_penalty=1.2
|
142 |
-
)
|
143 |
-
|
144 |
-
# Load Whisper model
|
145 |
-
logger.info("Loading Whisper model...")
|
146 |
-
whisper_model = whisper.load_model("base")
|
147 |
-
|
148 |
-
logger.info("All models initialized successfully")
|
149 |
-
return True
|
150 |
-
except Exception as e:
|
151 |
-
logger.error(f"Error during model initialization: {str(e)}")
|
152 |
-
raise
|
153 |
-
|
154 |
-
def download_social_media_video(url):
|
155 |
-
"""Download a video from social media."""
|
156 |
-
ydl_opts = {
|
157 |
-
'format': 'bestaudio/best',
|
158 |
-
'postprocessors': [{
|
159 |
-
'key': 'FFmpegExtractAudio',
|
160 |
-
'preferredcodec': 'mp3',
|
161 |
-
'preferredquality': '192',
|
162 |
-
}],
|
163 |
-
'outtmpl': '%(id)s.%(ext)s',
|
164 |
-
}
|
165 |
-
try:
|
166 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
167 |
-
info_dict = ydl.extract_info(url, download=True)
|
168 |
-
audio_file = f"{info_dict['id']}.mp3"
|
169 |
-
logger.info(f"Video downloaded successfully: {audio_file}")
|
170 |
-
return audio_file
|
171 |
-
except Exception as e:
|
172 |
-
logger.error(f"Error downloading video: {str(e)}")
|
173 |
-
raise
|
174 |
-
|
175 |
-
def convert_video_to_audio(video_file):
|
176 |
-
"""Convert a video file to audio."""
|
177 |
-
try:
|
178 |
-
video = VideoFileClip(video_file)
|
179 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
180 |
-
video.audio.write_audiofile(temp_file.name)
|
181 |
-
logger.info(f"Video converted to audio: {temp_file.name}")
|
182 |
-
return temp_file.name
|
183 |
-
except Exception as e:
|
184 |
-
logger.error(f"Error converting video: {str(e)}")
|
185 |
-
raise
|
186 |
-
|
187 |
-
def preprocess_audio(audio_file):
|
188 |
-
"""Preprocess the audio file to improve quality."""
|
189 |
-
try:
|
190 |
-
audio = AudioSegment.from_file(audio_file)
|
191 |
-
audio = audio.apply_gain(-audio.dBFS + (-20))
|
192 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
193 |
-
audio.export(temp_file.name, format="mp3")
|
194 |
-
logger.info(f"Audio preprocessed: {temp_file.name}")
|
195 |
-
return temp_file.name
|
196 |
-
except Exception as e:
|
197 |
-
logger.error(f"Error preprocessing audio: {str(e)}")
|
198 |
-
raise
|
199 |
-
|
200 |
-
@spaces.GPU(duration=60)
|
201 |
-
def transcribe_audio(file):
|
202 |
-
"""Transcribe an audio or video file."""
|
203 |
-
try:
|
204 |
-
if isinstance(file, str) and file.startswith('http'):
|
205 |
-
file_path = download_social_media_video(file)
|
206 |
-
elif isinstance(file, str) and file.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
207 |
-
file_path = convert_video_to_audio(file)
|
208 |
-
else:
|
209 |
-
file_path = preprocess_audio(file)
|
210 |
-
|
211 |
-
logger.info(f"Transcribing audio: {file_path}")
|
212 |
-
with torch.inference_mode():
|
213 |
-
result = whisper_model.transcribe(file_path)
|
214 |
-
transcription = result.get("text", "Error in transcription")
|
215 |
-
logger.info(f"Transcription completed: {transcription[:50]}...")
|
216 |
-
return transcription
|
217 |
-
except Exception as e:
|
218 |
-
logger.error(f"Error transcribing: {str(e)}")
|
219 |
-
return f"Error processing the file: {str(e)}"
|
220 |
-
|
221 |
-
def read_document(document_path):
|
222 |
-
"""Read the content of a document."""
|
223 |
-
try:
|
224 |
-
if document_path.endswith(".pdf"):
|
225 |
-
doc = fitz.open(document_path)
|
226 |
-
return "\n".join([page.get_text() for page in doc])
|
227 |
-
elif document_path.endswith(".docx"):
|
228 |
-
doc = Document(document_path)
|
229 |
-
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
230 |
-
elif document_path.endswith(".xlsx"):
|
231 |
-
return pd.read_excel(document_path).to_string()
|
232 |
-
elif document_path.endswith(".csv"):
|
233 |
-
return pd.read_csv(document_path).to_string()
|
234 |
-
else:
|
235 |
-
return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document."
|
236 |
-
except Exception as e:
|
237 |
-
return f"Error reading document: {str(e)}"
|
238 |
-
|
239 |
-
def read_url(url):
|
240 |
-
"""Read the content of a URL."""
|
241 |
-
try:
|
242 |
-
response = requests.get(url)
|
243 |
-
response.raise_for_status()
|
244 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
245 |
-
return soup.get_text()
|
246 |
-
except Exception as e:
|
247 |
-
return f"Error reading URL: {str(e)}"
|
248 |
-
|
249 |
-
def process_social_content(url):
|
250 |
-
"""Process social media content."""
|
251 |
-
try:
|
252 |
-
text_content = read_url(url)
|
253 |
-
try:
|
254 |
-
video_content = transcribe_audio(url)
|
255 |
-
except Exception:
|
256 |
-
video_content = None
|
257 |
-
|
258 |
-
return {
|
259 |
-
"text": text_content,
|
260 |
-
"video": video_content
|
261 |
-
}
|
262 |
-
except Exception as e:
|
263 |
-
logger.error(f"Error processing social content: {str(e)}")
|
264 |
-
return None
|
265 |
-
|
266 |
-
@spaces.GPU(duration=60)
|
267 |
-
def generate_news(instructions, facts, size, tone, *args):
|
268 |
-
try:
|
269 |
-
# Initialize knowledge base
|
270 |
-
knowledge_base = {
|
271 |
-
"instructions": instructions,
|
272 |
-
"facts": facts,
|
273 |
-
"document_content": [],
|
274 |
-
"audio_data": [],
|
275 |
-
"url_content": [],
|
276 |
-
"social_content": []
|
277 |
-
}
|
278 |
-
|
279 |
-
# Parse arguments
|
280 |
-
num_audios = 5 * 3
|
281 |
-
num_social_urls = 3 * 3
|
282 |
-
num_urls = 5
|
283 |
-
|
284 |
-
audios = args[:num_audios]
|
285 |
-
social_urls = args[num_audios:num_audios+num_social_urls]
|
286 |
-
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
287 |
-
documents = args[num_audios+num_social_urls+num_urls:]
|
288 |
-
|
289 |
-
# Process URLs
|
290 |
-
for url in urls:
|
291 |
-
if url:
|
292 |
-
knowledge_base["url_content"].append(read_url(url))
|
293 |
-
|
294 |
-
# Process documents
|
295 |
-
for document in documents:
|
296 |
-
if document is not None:
|
297 |
-
knowledge_base["document_content"].append(read_document(document.name))
|
298 |
-
|
299 |
-
# Process audio files
|
300 |
-
for i in range(0, len(audios), 3):
|
301 |
-
audio_file, name, position = audios[i:i+3]
|
302 |
-
if audio_file is not None:
|
303 |
-
knowledge_base["audio_data"].append({
|
304 |
-
"audio": audio_file,
|
305 |
-
"name": name,
|
306 |
-
"position": position
|
307 |
-
})
|
308 |
-
|
309 |
-
# Process social media content
|
310 |
-
for i in range(0, len(social_urls), 3):
|
311 |
-
social_url, social_name, social_context = social_urls[i:i+3]
|
312 |
-
if social_url:
|
313 |
-
social_content = process_social_content(social_url)
|
314 |
-
if social_content:
|
315 |
-
knowledge_base["social_content"].append({
|
316 |
-
"url": social_url,
|
317 |
-
"name": social_name,
|
318 |
-
"context": social_context,
|
319 |
-
"text": social_content["text"],
|
320 |
-
"video": social_content["video"]
|
321 |
-
})
|
322 |
-
|
323 |
-
# Build transcriptions
|
324 |
-
transcriptions_text = ""
|
325 |
-
raw_transcriptions = ""
|
326 |
-
|
327 |
-
for idx, data in enumerate(knowledge_base["audio_data"]):
|
328 |
-
if data["audio"] is not None:
|
329 |
-
transcription = transcribe_audio(data["audio"])
|
330 |
-
transcriptions_text += f'"{transcription}" - {data["name"]}, {data["position"]}\n'
|
331 |
-
raw_transcriptions += f'[Audio/Video {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}\n\n'
|
332 |
-
|
333 |
-
for data in knowledge_base["social_content"]:
|
334 |
-
if data["text"]:
|
335 |
-
transcriptions_text += f'[Social media text]: "{data["text"][:200]}..." - {data["name"]}, {data["context"]}\n'
|
336 |
-
raw_transcriptions += transcriptions_text + "\n\n"
|
337 |
-
if data["video"]:
|
338 |
-
video_transcription = f'[Social media video]: "{data["video"]}" - {data["name"]}, {data["context"]}\n'
|
339 |
-
transcriptions_text += video_transcription
|
340 |
-
raw_transcriptions += video_transcription + "\n\n"
|
341 |
-
|
342 |
-
document_content = "\n\n".join(knowledge_base["document_content"])
|
343 |
-
url_content = "\n\n".join(knowledge_base["url_content"])
|
344 |
-
|
345 |
-
# Create prompt
|
346 |
-
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
347 |
-
|
348 |
-
Instructions: {knowledge_base["instructions"]}
|
349 |
-
Facts: {knowledge_base["facts"]}
|
350 |
-
Additional content from documents: {document_content}
|
351 |
-
Additional content from URLs: {url_content}
|
352 |
-
|
353 |
-
Use these transcriptions as direct and indirect quotes:
|
354 |
-
{transcriptions_text}
|
355 |
-
|
356 |
-
Follow these requirements:
|
357 |
-
- Write a title
|
358 |
-
- Write a 15-word hook that complements the title
|
359 |
-
- Write the body with {size} words
|
360 |
-
- Use a {tone} tone
|
361 |
-
- Answer the 5 Ws (Who, What, When, Where, Why) in the first paragraph
|
362 |
-
- Use at least 80% direct quotes (in quotation marks)
|
363 |
-
- Use proper journalistic style
|
364 |
-
- Do not invent information
|
365 |
-
- Be rigorous with the provided facts [/INST]"""
|
366 |
-
|
367 |
-
# Generate article
|
368 |
-
with torch.inference_mode():
|
369 |
-
outputs = news_generator(
|
370 |
-
prompt,
|
371 |
-
max_new_tokens=min(int(size * 2), 1024),
|
372 |
-
return_full_text=False,
|
373 |
-
pad_token_id=tokenizer.eos_token_id,
|
374 |
-
num_return_sequences=1,
|
375 |
-
do_sample=True,
|
376 |
-
temperature=0.7,
|
377 |
-
top_p=0.95,
|
378 |
-
repetition_penalty=1.2
|
379 |
-
)
|
380 |
-
|
381 |
-
news_article = outputs[0]['generated_text']
|
382 |
-
news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
|
383 |
-
|
384 |
-
return news_article, raw_transcriptions
|
385 |
-
|
386 |
-
except Exception as e:
|
387 |
-
logger.error(f"Error generating news: {str(e)}")
|
388 |
-
return f"Error generating the news article: {str(e)}", ""
|
389 |
-
|
390 |
-
# Create Gradio interface
|
391 |
-
def create_demo():
|
392 |
-
with gr.Blocks(css="""
|
393 |
-
/* Container styles */
|
394 |
-
.gradio-container {
|
395 |
-
max-width: 1200px !important;
|
396 |
-
margin: auto !important;
|
397 |
-
}
|
398 |
-
|
399 |
-
/* Header styles */
|
400 |
-
.header {
|
401 |
-
margin-bottom: 1rem;
|
402 |
-
}
|
403 |
-
|
404 |
-
.header h1 {
|
405 |
-
font-size: 1.5rem !important;
|
406 |
-
margin-bottom: 0.5rem !important;
|
407 |
-
}
|
408 |
-
|
409 |
-
/* Two column layout */
|
410 |
-
.two-columns {
|
411 |
-
display: grid !important;
|
412 |
-
grid-template-columns: 300px 1fr !important;
|
413 |
-
gap: 2rem !important;
|
414 |
-
margin-top: 1rem !important;
|
415 |
-
}
|
416 |
-
|
417 |
-
/* Input fields */
|
418 |
-
.input-field {
|
419 |
-
margin-bottom: 1rem !important;
|
420 |
-
}
|
421 |
-
|
422 |
-
/* Tab navigation */
|
423 |
-
.tabs > .tab-nav {
|
424 |
-
display: flex !important;
|
425 |
-
flex-wrap: wrap !important;
|
426 |
-
gap: 4px !important;
|
427 |
-
border-bottom: 1px solid #e5e7eb !important;
|
428 |
-
padding-bottom: 0.5rem !important;
|
429 |
-
margin-bottom: 1rem !important;
|
430 |
-
}
|
431 |
-
|
432 |
-
.tab-nav * {
|
433 |
-
font-size: 0.8rem !important;
|
434 |
-
padding: 0.2rem 0.5rem !important;
|
435 |
-
border-radius: 4px !important;
|
436 |
-
background: transparent !important;
|
437 |
-
border: 1px solid #e5e7eb !important;
|
438 |
-
color: #374151 !important;
|
439 |
-
}
|
440 |
-
|
441 |
-
/* File upload area */
|
442 |
-
.file-upload {
|
443 |
-
max-height: 120px !important;
|
444 |
-
min-height: 120px !important;
|
445 |
-
border: 1px dashed #e5e7eb !important;
|
446 |
-
border-radius: 4px !important;
|
447 |
-
display: flex !important;
|
448 |
-
align-items: center !important;
|
449 |
-
justify-content: center !important;
|
450 |
-
margin-bottom: 0.5rem !important;
|
451 |
-
padding: 1rem !important;
|
452 |
-
}
|
453 |
-
|
454 |
-
.file-upload svg {
|
455 |
-
width: 24px !important;
|
456 |
-
height: 24px !important;
|
457 |
-
opacity: 0.5 !important;
|
458 |
-
}
|
459 |
-
|
460 |
-
/* Button styles */
|
461 |
-
.generate-btn {
|
462 |
-
margin-top: 1rem !important;
|
463 |
-
background: #4b5563 !important;
|
464 |
-
color: white !important;
|
465 |
-
padding: 0.5rem 1rem !important;
|
466 |
-
border-radius: 4px !important;
|
467 |
-
width: auto !important;
|
468 |
-
}
|
469 |
-
|
470 |
-
/* Output areas */
|
471 |
-
.output-box {
|
472 |
-
margin-top: 1rem !important;
|
473 |
-
border: 1px solid #e5e7eb !important;
|
474 |
-
border-radius: 4px !important;
|
475 |
-
padding: 0.5rem !important;
|
476 |
-
}
|
477 |
-
""") as demo:
|
478 |
-
# Header
|
479 |
-
with gr.Group(elem_classes=["header"]):
|
480 |
-
gr.Markdown("# All-in-One News Generator")
|
481 |
-
gr.Markdown("""
|
482 |
-
**About this tool**
|
483 |
-
|
484 |
-
This AI-powered news generator helps journalists and content creators produce news articles by processing multiple types of input:
|
485 |
-
- Audio and video files with automatic transcription
|
486 |
-
- Social media content
|
487 |
-
- Documents (PDF, DOCX, XLSX, CSV)
|
488 |
-
- Web URLs
|
489 |
-
|
490 |
-
The tool uses advanced AI to generate well-structured news articles following journalistic principles and maintaining the integrity of source quotes.
|
491 |
-
""")
|
492 |
-
gr.Markdown("*Created by Camilo Vega, AI Consultant*")
|
493 |
-
|
494 |
-
with gr.Row(elem_classes=["two-columns"]):
|
495 |
-
# Left column - Main inputs
|
496 |
-
with gr.Column():
|
497 |
-
instructions = gr.Textbox(
|
498 |
-
label="News article instructions",
|
499 |
-
lines=3,
|
500 |
-
elem_classes=["input-field"]
|
501 |
-
)
|
502 |
-
facts = gr.Textbox(
|
503 |
-
label="Describe the news facts",
|
504 |
-
lines=4,
|
505 |
-
elem_classes=["input-field"]
|
506 |
-
)
|
507 |
-
size = gr.Number(
|
508 |
-
label="Content body size (in words)",
|
509 |
-
value=100,
|
510 |
-
elem_classes=["input-field"]
|
511 |
-
)
|
512 |
-
tone = gr.Dropdown(
|
513 |
-
label="News tone",
|
514 |
-
choices=["serious", "neutral", "lighthearted"],
|
515 |
-
value="neutral",
|
516 |
-
elem_classes=["input-field"]
|
517 |
-
)
|
518 |
-
|
519 |
-
# Right column - Source inputs
|
520 |
-
with gr.Column():
|
521 |
-
inputs_list = [instructions, facts, size, tone]
|
522 |
-
|
523 |
-
with gr.Tabs() as tabs:
|
524 |
-
# Audio/Video Sources
|
525 |
-
for i in range(1, 6):
|
526 |
-
with gr.Tab(f"Audio/Video {i}"):
|
527 |
-
with gr.Group():
|
528 |
-
file = gr.File(
|
529 |
-
label="Upload Audio/Video",
|
530 |
-
file_types=["audio", "video"],
|
531 |
-
elem_classes=["file-upload"]
|
532 |
-
)
|
533 |
-
name = gr.Textbox(
|
534 |
-
label="Name",
|
535 |
-
elem_classes=["input-field"]
|
536 |
-
)
|
537 |
-
position = gr.Textbox(
|
538 |
-
label="Position",
|
539 |
-
elem_classes=["input-field"]
|
540 |
-
)
|
541 |
-
inputs_list.extend([file, name, position])
|
542 |
-
|
543 |
-
# Social Media Sources
|
544 |
-
for i in range(1, 4):
|
545 |
-
with gr.Tab(f"Social Media {i}"):
|
546 |
-
social_url = gr.Textbox(
|
547 |
-
label="URL",
|
548 |
-
elem_classes=["input-field"]
|
549 |
-
)
|
550 |
-
social_name = gr.Textbox(
|
551 |
-
label="Person/account name",
|
552 |
-
elem_classes=["input-field"]
|
553 |
-
)
|
554 |
-
social_context = gr.Textbox(
|
555 |
-
label="Content context",
|
556 |
-
elem_classes=["input-field"]
|
557 |
-
)
|
558 |
-
inputs_list.extend([social_url, social_name, social_context])
|
559 |
-
|
560 |
-
# URLs
|
561 |
-
for i in range(1, 6):
|
562 |
-
with gr.Tab(f"URL {i}"):
|
563 |
-
url = gr.Textbox(
|
564 |
-
label=f"URL {i}",
|
565 |
-
elem_classes=["input-field"]
|
566 |
-
)
|
567 |
-
inputs_list.append(url)
|
568 |
-
|
569 |
-
# Documents
|
570 |
-
for i in range(1, 6):
|
571 |
-
with gr.Tab(f"Document {i}"):
|
572 |
-
document = gr.File(
|
573 |
-
label=f"Document {i}",
|
574 |
-
file_types=["pdf", "docx", "xlsx", "csv"],
|
575 |
-
elem_classes=["file-upload"]
|
576 |
-
)
|
577 |
-
inputs_list.append(document)
|
578 |
-
|
579 |
-
# Output areas
|
580 |
-
transcriptions_output = gr.Textbox(
|
581 |
-
label="Transcriptions",
|
582 |
-
lines=6,
|
583 |
-
elem_classes=["output-box"]
|
584 |
-
)
|
585 |
-
|
586 |
-
generate = gr.Button(
|
587 |
-
"Generate Draft",
|
588 |
-
elem_classes=["generate-btn"]
|
589 |
-
)
|
590 |
-
|
591 |
-
news_output = gr.Textbox(
|
592 |
-
label="Generated Draft",
|
593 |
-
lines=10,
|
594 |
-
elem_classes=["output-box"]
|
595 |
-
)
|
596 |
-
|
597 |
-
# Connect the generate button
|
598 |
-
generate.click(
|
599 |
-
fn=generate_news,
|
600 |
-
inputs=inputs_list,
|
601 |
-
outputs=[news_output, transcriptions_output]
|
602 |
-
)
|
603 |
-
|
604 |
-
return demo
|
605 |
-
|
606 |
-
# Initialize and launch
|
607 |
-
if __name__ == "__main__":
|
608 |
-
demo = create_demo()
|
609 |
-
demo.queue()
|
610 |
-
demo.launch(
|
611 |
-
share=True,
|
612 |
-
server_name="0.0.0.0",
|
613 |
-
server_port=7860
|
614 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|