Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -22,12 +22,12 @@ import traceback # For detailed error logging
|
|
22 |
|
23 |
# Configure logging
|
24 |
logging.basicConfig(
|
25 |
-
level=logging.INFO,
|
26 |
-
format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s'
|
27 |
)
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
-
logger.info("--- Starting App ---")
|
31 |
|
32 |
# Login to Hugging Face Hub if token is available
|
33 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
@@ -40,7 +40,7 @@ if HUGGINGFACE_TOKEN:
|
|
40 |
logger.error(f"Failed to login to Hugging Face Hub: {e}")
|
41 |
logger.error(traceback.format_exc())
|
42 |
else:
|
43 |
-
logger.warning("HUGGINGFACE_TOKEN environment variable not set.
|
44 |
|
45 |
|
46 |
class ModelManager:
|
@@ -54,7 +54,7 @@ class ModelManager:
|
|
54 |
return cls._instance
|
55 |
|
56 |
def __init__(self):
|
57 |
-
if not hasattr(self, '_initialized') or not self._initialized:
|
58 |
logger.info("Initializing ModelManager attributes.")
|
59 |
self.tokenizer = None
|
60 |
self.model = None
|
@@ -65,10 +65,9 @@ class ModelManager:
|
|
65 |
self.last_used = time.time()
|
66 |
self.llm_loading = False
|
67 |
self.whisper_loading = False
|
68 |
-
self._initialized = True
|
69 |
|
70 |
def _cleanup_memory(self):
|
71 |
-
"""Utility function to force memory cleanup"""
|
72 |
logger.info("Running garbage collection...")
|
73 |
collected_count = gc.collect()
|
74 |
logger.info(f"Garbage collected ({collected_count} objects).")
|
@@ -78,500 +77,262 @@ class ModelManager:
|
|
78 |
logger.info("CUDA cache cleared.")
|
79 |
|
80 |
def reset_llm(self):
|
81 |
-
"""Explicitly resets the LLM components."""
|
82 |
logger.info("--- Attempting to reset LLM ---")
|
83 |
try:
|
84 |
-
|
85 |
-
if hasattr(self, '
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
del self.tokenizer
|
90 |
-
logger.info("LLM tokenizer deleted.")
|
91 |
-
if hasattr(self, 'text_pipeline') and self.text_pipeline is not None:
|
92 |
-
del self.text_pipeline
|
93 |
-
logger.info("LLM pipeline deleted.")
|
94 |
-
|
95 |
-
# Reset attributes
|
96 |
-
self.model = None
|
97 |
-
self.tokenizer = None
|
98 |
-
self.text_pipeline = None
|
99 |
-
self.llm_loaded = False # Mark as not loaded
|
100 |
self._cleanup_memory()
|
101 |
logger.info("LLM components reset successfully.")
|
102 |
-
except Exception as e:
|
103 |
-
logger.error(f"!!! ERROR during LLM reset: {e}")
|
104 |
-
logger.error(traceback.format_exc())
|
105 |
|
106 |
def reset_whisper(self):
|
107 |
-
"""Explicitly resets the Whisper model."""
|
108 |
logger.info("--- Attempting to reset Whisper ---")
|
109 |
try:
|
110 |
-
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
|
111 |
-
del self.whisper_model
|
112 |
-
logger.info("Whisper model deleted.")
|
113 |
-
|
114 |
self.whisper_model = None
|
115 |
-
self.whisper_loaded = False
|
116 |
self._cleanup_memory()
|
117 |
logger.info("Whisper component reset successfully.")
|
118 |
-
except Exception as e:
|
119 |
-
logger.error(f"!!! ERROR during Whisper reset: {e}")
|
120 |
-
logger.error(traceback.format_exc())
|
121 |
|
122 |
@spaces.GPU(duration=120)
|
123 |
def initialize_llm(self):
|
124 |
-
"""Initialize LLM model with standard transformers"""
|
125 |
logger.info("Attempting to initialize LLM.")
|
126 |
-
if self.llm_loading:
|
127 |
-
|
128 |
-
return True
|
129 |
-
if self.llm_loaded:
|
130 |
-
logger.info("LLM already initialized.")
|
131 |
-
self.last_used = time.time()
|
132 |
-
return True
|
133 |
-
|
134 |
-
# Explicitly try to free Whisper memory before loading LLM
|
135 |
-
# self.reset_whisper() # Optional: Uncomment if severe memory pressure
|
136 |
-
|
137 |
self.llm_loading = True
|
138 |
logger.info("Starting LLM initialization...")
|
139 |
try:
|
140 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
141 |
logger.info(f"Using LLM model: {MODEL_NAME}")
|
142 |
-
|
143 |
-
logger.info("Loading LLM tokenizer...")
|
144 |
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, use_fast=True)
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
logger.info("Loading LLM model...")
|
150 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
151 |
-
MODEL_NAME, token=HUGGINGFACE_TOKEN, device_map="auto",
|
152 |
-
torch_dtype=torch.float16, low_cpu_mem_usage=True,
|
153 |
-
offload_folder="offload", offload_state_dict=True
|
154 |
-
)
|
155 |
-
logger.info("LLM model loaded.")
|
156 |
-
|
157 |
-
logger.info("Creating LLM text generation pipeline...")
|
158 |
-
self.text_pipeline = pipeline(
|
159 |
-
"text-generation", model=self.model, tokenizer=self.tokenizer,
|
160 |
-
torch_dtype=torch.float16, device_map="auto", max_length=1024
|
161 |
-
)
|
162 |
-
logger.info("LLM text generation pipeline created.")
|
163 |
-
|
164 |
logger.info("LLM initialized successfully.")
|
165 |
-
self.last_used = time.time()
|
166 |
-
|
167 |
-
self.llm_loading = False
|
168 |
-
return True
|
169 |
-
|
170 |
-
except Exception as e:
|
171 |
-
logger.error(f"!!! ERROR during LLM initialization: {str(e)}")
|
172 |
-
logger.error(traceback.format_exc())
|
173 |
-
logger.error("Resetting potentially partially loaded LLM components due to error.")
|
174 |
-
self.reset_llm() # Use the specific reset function
|
175 |
-
self.llm_loading = False
|
176 |
-
raise
|
177 |
|
178 |
@spaces.GPU(duration=120)
|
179 |
def initialize_whisper(self):
|
180 |
-
"""Initialize Whisper model for audio transcription"""
|
181 |
logger.info("Attempting to initialize Whisper.")
|
182 |
-
if self.whisper_loading:
|
183 |
-
|
184 |
-
return True
|
185 |
-
if self.whisper_loaded:
|
186 |
-
logger.info("Whisper already initialized.")
|
187 |
-
self.last_used = time.time()
|
188 |
-
return True
|
189 |
-
|
190 |
-
# Explicitly try to free LLM memory before loading Whisper
|
191 |
-
# self.reset_llm() # Optional: Uncomment if severe memory pressure
|
192 |
-
|
193 |
self.whisper_loading = True
|
194 |
logger.info("Starting Whisper initialization...")
|
195 |
try:
|
196 |
WHISPER_MODEL_NAME = "tiny"
|
197 |
-
|
198 |
-
self.whisper_model = whisper.load_model(
|
199 |
-
WHISPER_MODEL_NAME, device="cuda" if torch.cuda.is_available() else "cpu",
|
200 |
-
download_root="/tmp/whisper"
|
201 |
-
)
|
202 |
logger.info(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
|
203 |
-
self.last_used = time.time()
|
204 |
-
|
205 |
-
self.whisper_loading = False
|
206 |
-
return True
|
207 |
-
except Exception as e:
|
208 |
-
logger.error(f"!!! ERROR during Whisper initialization: {str(e)}")
|
209 |
-
logger.error(traceback.format_exc())
|
210 |
-
logger.error("Resetting potentially partially loaded Whisper components due to error.")
|
211 |
-
self.reset_whisper() # Use the specific reset function
|
212 |
-
self.whisper_loading = False
|
213 |
-
raise
|
214 |
|
215 |
def check_llm_initialized(self):
|
216 |
-
"""Check if LLM is initialized and initialize if needed"""
|
217 |
logger.info("Checking if LLM is initialized.")
|
218 |
if not self.llm_loaded:
|
219 |
logger.info("LLM not initialized, attempting initialization...")
|
220 |
-
if not self.llm_loading:
|
221 |
-
self.initialize_llm() # This will raise error if it fails
|
222 |
-
logger.info("LLM initialization completed by check_llm_initialized.")
|
223 |
else:
|
224 |
-
logger.info("LLM initialization
|
225 |
time.sleep(10)
|
226 |
-
if not self.llm_loaded:
|
227 |
-
|
228 |
-
|
229 |
-
else:
|
230 |
-
logger.info("LLM seems initialized now after waiting.")
|
231 |
-
else:
|
232 |
-
logger.info("LLM was already initialized.")
|
233 |
self.last_used = time.time()
|
234 |
|
235 |
-
|
236 |
def check_whisper_initialized(self):
|
237 |
-
"""Check if Whisper model is initialized and initialize if needed"""
|
238 |
logger.info("Checking if Whisper is initialized.")
|
239 |
if not self.whisper_loaded:
|
240 |
logger.info("Whisper model not initialized, attempting initialization...")
|
241 |
-
if not self.whisper_loading:
|
242 |
-
self.initialize_whisper() # This will raise error if it fails
|
243 |
-
logger.info("Whisper initialization completed by check_whisper_initialized.")
|
244 |
else:
|
245 |
-
logger.info("Whisper initialization
|
246 |
time.sleep(10)
|
247 |
-
if not self.whisper_loaded:
|
248 |
-
|
249 |
-
|
250 |
-
else:
|
251 |
-
logger.info("Whisper seems initialized now after waiting.")
|
252 |
-
else:
|
253 |
-
logger.info("Whisper was already initialized.")
|
254 |
self.last_used = time.time()
|
255 |
|
256 |
def reset_models(self, force=False):
|
257 |
-
"
|
258 |
-
if force:
|
259 |
-
logger.info("Forcing reset of all models.")
|
260 |
-
self.reset_llm()
|
261 |
-
self.reset_whisper()
|
262 |
-
|
263 |
|
264 |
# Create global model manager instance
|
265 |
logger.info("Creating global ModelManager instance.")
|
266 |
model_manager = ModelManager()
|
267 |
|
268 |
-
|
269 |
# --- Functions: download_social_media_video, convert_video_to_audio, etc. ---
|
270 |
-
# ---
|
271 |
-
# --- with detailed logging. Paste them here. ---
|
272 |
-
|
273 |
@lru_cache(maxsize=16)
|
274 |
def download_social_media_video(url):
|
275 |
-
"
|
276 |
-
logger.info(f"Attempting to download audio from social media URL: {url}")
|
277 |
temp_dir = tempfile.mkdtemp()
|
278 |
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
|
279 |
final_audio_file_path = None
|
280 |
-
ydl_opts = {
|
281 |
-
'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}],
|
282 |
-
'outtmpl': output_template, 'quiet': True, 'no_warnings': True, 'nocheckcertificate': True, 'retries': 3, 'socket_timeout': 15, 'cachedir': False
|
283 |
-
}
|
284 |
try:
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
logger.debug(f"yt-dlp extraction complete for {url}. ID: {info_dict.get('id')}")
|
290 |
-
found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
|
291 |
-
if found_files:
|
292 |
-
final_audio_file_path = os.path.join(temp_dir, found_files[0])
|
293 |
-
logger.debug(f"Found downloaded MP3: {final_audio_file_path}")
|
294 |
-
else:
|
295 |
-
logger.error(f"Could not find downloaded MP3 file in {temp_dir} for URL {url}")
|
296 |
-
raise FileNotFoundError(f"Downloaded MP3 not found in {temp_dir}")
|
297 |
-
logger.debug(f"Reading content of {final_audio_file_path}")
|
298 |
with open(final_audio_file_path, 'rb') as f: audio_content = f.read()
|
299 |
-
logger.debug("Saving audio content to a new temporary file...")
|
300 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
|
301 |
-
temp_output_file.write(audio_content)
|
302 |
-
|
303 |
-
logger.info(f"Audio content saved to temporary file for processing: {final_path_for_gradio}")
|
304 |
return final_path_for_gradio
|
305 |
-
except yt_dlp.utils.DownloadError as e:
|
306 |
-
|
307 |
-
return None
|
308 |
-
except Exception as e:
|
309 |
-
logger.error(f"!!! Unexpected error downloading video from {url}: {str(e)}")
|
310 |
-
logger.error(traceback.format_exc())
|
311 |
-
return None
|
312 |
finally:
|
313 |
if os.path.exists(temp_dir):
|
314 |
-
|
315 |
-
|
316 |
-
import shutil
|
317 |
-
shutil.rmtree(temp_dir)
|
318 |
-
except Exception as cleanup_e: logger.warning(f"Could not clean up {temp_dir}: {cleanup_e}")
|
319 |
|
320 |
def convert_video_to_audio(video_file_path):
|
321 |
-
"
|
322 |
-
logger.info(f"Attempting to convert video to audio: {video_file_path}")
|
323 |
output_file_path = None
|
324 |
try:
|
325 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: output_file_path = temp_file.name
|
326 |
-
logger.debug(f"Output audio path will be: {output_file_path}")
|
327 |
command = ["ffmpeg", "-i", video_file_path, "-vn", "-acodec", "libmp3lame", "-ab", "192k", "-ar", "44100", "-ac", "2", output_file_path, "-y", "-loglevel", "error"]
|
328 |
-
|
329 |
-
|
330 |
-
logger.
|
331 |
-
if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0:
|
332 |
-
logger.error(f"ffmpeg conversion failed: Output file '{output_file_path}' not created or is empty.")
|
333 |
-
raise RuntimeError(f"ffmpeg conversion failed: Output file '{output_file_path}' not created or is empty.")
|
334 |
-
logger.info(f"Video successfully converted to audio: {output_file_path}")
|
335 |
return output_file_path
|
336 |
-
except subprocess.CalledProcessError as e:
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
except: pass
|
342 |
-
raise RuntimeError(f"ffmpeg conversion failed: {e.stderr}") from e
|
343 |
-
except subprocess.TimeoutExpired as e:
|
344 |
-
logger.error(f"!!! ffmpeg command timed out after {e.timeout} seconds for video: {video_file_path}")
|
345 |
-
if output_file_path and os.path.exists(output_file_path):
|
346 |
-
try: os.remove(output_file_path)
|
347 |
-
except: pass
|
348 |
-
raise RuntimeError(f"ffmpeg conversion timed out after {e.timeout} seconds.") from e
|
349 |
-
except Exception as e:
|
350 |
-
logger.error(f"!!! Error converting video '{video_file_path}': {str(e)}")
|
351 |
-
logger.error(traceback.format_exc())
|
352 |
-
if output_file_path and os.path.exists(output_file_path):
|
353 |
try: os.remove(output_file_path)
|
354 |
except: pass
|
355 |
-
raise
|
356 |
|
357 |
def preprocess_audio(input_audio_path):
|
358 |
-
"
|
359 |
-
logger.info(f"Attempting to preprocess audio file: {input_audio_path}")
|
360 |
output_path = None
|
361 |
try:
|
362 |
-
if not os.path.exists(input_audio_path):
|
363 |
-
logger.error(f"Input audio file for preprocessing not found: {input_audio_path}")
|
364 |
-
raise FileNotFoundError(f"Input audio file not found: {input_audio_path}")
|
365 |
-
logger.debug("Loading audio with pydub...")
|
366 |
audio = AudioSegment.from_file(input_audio_path)
|
367 |
-
logger.debug("Audio loaded.")
|
368 |
-
# Optional normalization can be added here
|
369 |
-
logger.debug("Exporting preprocessed audio...")
|
370 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
371 |
-
output_path = temp_file.name
|
372 |
-
|
373 |
-
logger.info(f"Audio preprocessed and saved to: {output_path}")
|
374 |
return output_path
|
375 |
-
except FileNotFoundError as e:
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
if output_path and os.path.exists(output_path):
|
382 |
-
try: os.remove(output_path)
|
383 |
-
except: pass
|
384 |
-
raise
|
385 |
|
386 |
@spaces.GPU(duration=300)
|
387 |
def transcribe_audio_or_video(file_input):
|
388 |
-
"
|
389 |
-
|
390 |
-
audio_file_to_transcribe = None; original_input_path = None
|
391 |
-
temp_files_to_clean = []; processing_step = "Initialization"; transcription = ""
|
392 |
try:
|
393 |
-
|
394 |
-
logger.info("Checking/Initializing Whisper model for transcription...")
|
395 |
-
model_manager.check_whisper_initialized()
|
396 |
-
logger.info("Whisper model is ready for transcription.")
|
397 |
if file_input is None: return ""
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
input_path = original_input_path
|
403 |
-
elif hasattr(file_input, 'name') and file_input.name:
|
404 |
-
original_input_path = file_input.name
|
405 |
-
if not os.path.exists(original_input_path): raise FileNotFoundError(f"Gradio temporary file not found: {original_input_path}")
|
406 |
-
input_path = original_input_path
|
407 |
-
else: raise TypeError("Invalid input type for transcription.")
|
408 |
-
logger.debug(f"Input path identified: {input_path}")
|
409 |
file_extension = os.path.splitext(input_path)[1].lower()
|
410 |
-
logger.debug(f"File extension: {file_extension}")
|
411 |
-
processing_step = "Video Conversion Check"
|
412 |
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
|
413 |
-
logger.info(f"Detected video file ({file_extension}), converting...")
|
414 |
converted_audio_path = convert_video_to_audio(input_path)
|
415 |
temp_files_to_clean.append(converted_audio_path); audio_file_to_process = converted_audio_path
|
416 |
-
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac']:
|
417 |
-
|
418 |
-
audio_file_to_process = input_path
|
419 |
-
else: raise ValueError(f"Unsupported file type: {file_extension}")
|
420 |
-
processing_step = "Audio Preprocessing"
|
421 |
try:
|
422 |
-
logger.debug(f"Attempting to preprocess audio file: {audio_file_to_process}")
|
423 |
preprocessed_audio_path = preprocess_audio(audio_file_to_process)
|
424 |
if preprocessed_audio_path != audio_file_to_process: temp_files_to_clean.append(preprocessed_audio_path)
|
425 |
audio_file_to_transcribe = preprocessed_audio_path
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
audio_file_to_transcribe = audio_file_to_process
|
430 |
-
processing_step = "Transcription Execution"
|
431 |
-
logger.info(f"Starting transcription execution for: {audio_file_to_transcribe}")
|
432 |
-
if not os.path.exists(audio_file_to_transcribe): raise FileNotFoundError(f"Audio file to transcribe not found: {audio_file_to_transcribe}")
|
433 |
-
logger.debug("Calling Whisper model transcribe method...")
|
434 |
with torch.inference_mode():
|
435 |
-
use_fp16 = torch.cuda.is_available()
|
436 |
result = model_manager.whisper_model.transcribe(audio_file_to_transcribe, fp16=use_fp16)
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
processing_step = "Success"
|
442 |
-
except FileNotFoundError as e:
|
443 |
-
logger.error(f"!!! File not found error (Step: {processing_step}): {e}"); transcription = f"Error: Input file not found ({e})"
|
444 |
-
except ValueError as e:
|
445 |
-
logger.error(f"!!! Value error (Step: {processing_step}): {e}"); transcription = f"Error: Unsupported file type ({e})"
|
446 |
-
except TypeError as e:
|
447 |
-
logger.error(f"!!! Type error (Step: {processing_step}): {e}"); transcription = f"Error: Invalid input provided ({e})"
|
448 |
-
except RuntimeError as e:
|
449 |
-
logger.error(f"!!! Runtime error (Step: {processing_step}): {e}"); logger.error(traceback.format_exc()); transcription = f"Error during processing: {e}"
|
450 |
-
except Exception as e:
|
451 |
-
logger.error(f"!!! Unexpected error (Step: {processing_step}): {str(e)}"); logger.error(traceback.format_exc()); transcription = f"Error processing the file: An unexpected error occurred."
|
452 |
finally:
|
453 |
-
logger.debug(f"--- Cleaning
|
454 |
for temp_file in temp_files_to_clean:
|
455 |
try:
|
456 |
-
if os.path.exists(temp_file): os.remove(temp_file)
|
457 |
-
except Exception as e: logger.warning(f"
|
458 |
-
logger.debug("--- Finished transcription cleanup ---")
|
459 |
return transcription
|
460 |
|
461 |
@lru_cache(maxsize=16)
|
462 |
def read_document(document_path):
|
463 |
-
"
|
464 |
-
logger.info(f"Attempting to read document: {document_path}")
|
465 |
try:
|
466 |
-
if not os.path.exists(document_path): raise FileNotFoundError(f"
|
467 |
-
|
468 |
content = ""
|
469 |
-
if
|
470 |
-
logger.debug("Reading PDF using PyMuPDF...")
|
471 |
doc = fitz.open(document_path)
|
472 |
-
if doc.is_encrypted:
|
473 |
-
logger.warning(f"PDF {document_path} encrypted. Trying empty password.")
|
474 |
-
if not doc.authenticate(""): raise ValueError("Encrypted PDF cannot be read.")
|
475 |
content = "\n".join([page.get_text() for page in doc]); doc.close()
|
476 |
-
elif
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
for sheet_name in xls.sheet_names:
|
483 |
-
logger.debug(f"Reading sheet: {sheet_name}")
|
484 |
-
df = pd.read_excel(xls, sheet_name=sheet_name); text_parts.append(f"--- Sheet: {sheet_name} ---\n{df.to_string()}")
|
485 |
-
content = "\n\n".join(text_parts).strip()
|
486 |
-
elif file_extension == ".csv":
|
487 |
-
logger.debug("Reading CSV using pandas...")
|
488 |
try:
|
489 |
-
with open(document_path, 'rb') as f: import chardet;
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
except Exception as e2:
|
496 |
-
logger.error(f"Also failed with semicolon ({e2}). Trying latin1.")
|
497 |
-
try: df = pd.read_csv(document_path, encoding='latin1')
|
498 |
-
except Exception as e3: raise ValueError(f"Failed to parse CSV: {e1}, {e2}, {e3}")
|
499 |
content = df.to_string()
|
500 |
-
else: return "Unsupported file type.
|
501 |
-
logger.info(f"
|
502 |
return content
|
503 |
-
except
|
504 |
-
except ValueError as e: logger.error(f"!!! Value error reading doc: {e}"); return f"Error reading document: {e}"
|
505 |
-
except Exception as e: logger.error(f"!!! Error reading doc: {str(e)}"); logger.error(traceback.format_exc()); return f"Error reading document: {str(e)}"
|
506 |
|
507 |
@lru_cache(maxsize=16)
|
508 |
def read_url(url):
|
509 |
-
"
|
510 |
-
logger.info(f"Attempting to read URL: {url}")
|
511 |
if not url or not url.strip().startswith('http'): return ""
|
512 |
try:
|
513 |
-
headers = {'User-Agent': 'Mozilla/5.0 ...
|
514 |
-
logger.debug(f"Sending GET to {url}")
|
515 |
response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
|
516 |
-
logger.debug(f"Response from {url}: {response.status_code}, CT: {response.headers.get('content-type')}")
|
517 |
response.raise_for_status()
|
518 |
-
|
519 |
-
if not ('html' in
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
body = soup.find("body")
|
533 |
-
if body: text = body.get_text(separator='\n', strip=True)
|
534 |
-
else: text = soup.get_text(separator='\n', strip=True)
|
535 |
-
lines = [line.strip() for line in text.split('\n') if line.strip()]; cleaned_text = "\n".join(lines)
|
536 |
-
if not cleaned_text: return "Error: Could not extract text content from URL."
|
537 |
-
max_chars = 15000
|
538 |
-
final_text = (cleaned_text[:max_chars] + "... [content truncated]") if len(cleaned_text) > max_chars else cleaned_text
|
539 |
-
logger.info(f"Successfully read URL {url}. Final length: {len(final_text)}")
|
540 |
-
return final_text
|
541 |
-
except requests.exceptions.RequestException as e: logger.error(f"!!! Error fetching URL {url}: {e}"); return f"Error reading URL: Could not fetch content ({e})"
|
542 |
-
except Exception as e: logger.error(f"!!! Error parsing URL {url}: {e}"); logger.error(traceback.format_exc()); return f"Error reading URL: Could not parse content ({e})"
|
543 |
|
544 |
def process_social_media_url(url):
|
545 |
-
"
|
546 |
-
logger.info(f"--- Starting processing for social media URL: {url} ---")
|
547 |
if not url or not url.strip().startswith('http'): return None
|
548 |
-
|
549 |
-
try:
|
550 |
-
|
551 |
-
text_content_result = read_url(url)
|
552 |
-
if text_content_result and not text_content_result.startswith("Error:"): text_content = text_content_result; logger.debug("Text read success.")
|
553 |
-
elif text_content_result: logger.warning(f"read_url error for {url}: {text_content_result}")
|
554 |
-
else: logger.debug("No text via read_url.")
|
555 |
-
except Exception as e: logger.error(f"!!! Exception text reading social URL {url}: {e}"); logger.error(traceback.format_exc())
|
556 |
try:
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
logger.info(f"Audio downloaded from {url} to {temp_audio_file}. Transcribing...")
|
561 |
-
transcription_result = transcribe_audio_or_video(temp_audio_file)
|
562 |
-
if transcription_result and not transcription_result.startswith("Error"): video_transcription = transcription_result; logger.info("Transcription success.")
|
563 |
-
elif transcription_result: logger.warning(f"Transcription error for {url}: {transcription_result}")
|
564 |
-
else: logger.warning(f"Empty transcription for {url}.")
|
565 |
-
else: logger.debug("No downloadable audio found.")
|
566 |
-
except Exception as e: logger.error(f"!!! Exception audio processing social URL {url}: {e}"); logger.error(traceback.format_exc())
|
567 |
finally:
|
568 |
-
if
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
else: logger.info(f"No usable content retrieved for social URL: {url}"); return None
|
575 |
|
576 |
# ==============================================================
|
577 |
# ========= SIMPLIFIED generate_news FOR DEBUGGING =============
|
@@ -613,7 +374,8 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
613 |
# ==============================================================
|
614 |
|
615 |
|
616 |
-
# --- create_demo function
|
|
|
617 |
def create_demo():
|
618 |
"""Creates the Gradio interface"""
|
619 |
logger.info("--- Creating Gradio interface ---")
|
@@ -623,55 +385,46 @@ def create_demo():
|
|
623 |
all_inputs = []
|
624 |
with gr.Row():
|
625 |
with gr.Column(scale=2):
|
626 |
-
logger.info("Creating instruction input.")
|
627 |
instructions = gr.Textbox(label="Instructions for the News Article", placeholder="Enter specific instructions...", lines=2)
|
628 |
all_inputs.append(instructions)
|
629 |
-
logger.info("Creating facts input.")
|
630 |
facts = gr.Textbox(label="Main Facts", placeholder="Describe the most important facts...", lines=4)
|
631 |
all_inputs.append(facts)
|
632 |
with gr.Row():
|
633 |
-
logger.info("Creating size slider.")
|
634 |
size_slider = gr.Slider(label="Approximate Length (words)", minimum=100, maximum=700, value=250, step=50)
|
635 |
all_inputs.append(size_slider)
|
636 |
-
logger.info("Creating tone dropdown.")
|
637 |
tone_dropdown = gr.Dropdown(label="Tone of the News Article", choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"], value="neutral")
|
638 |
all_inputs.append(tone_dropdown)
|
639 |
with gr.Column(scale=3):
|
640 |
with gr.Tabs():
|
641 |
with gr.TabItem("π Documents"):
|
642 |
-
logger.info("Creating document input tabs.")
|
643 |
gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
|
644 |
doc_inputs = []
|
645 |
for i in range(1, 6):
|
646 |
-
|
|
|
647 |
doc_inputs.append(doc_file)
|
648 |
all_inputs.extend(doc_inputs)
|
649 |
-
logger.info(f"{len(doc_inputs)} document inputs created.")
|
650 |
with gr.TabItem("π Audio/Video"):
|
651 |
-
logger.info("Creating audio/video input tabs.")
|
652 |
gr.Markdown("Upload audio or video files... Max 5 sources.")
|
653 |
audio_video_inputs = []
|
654 |
for i in range(1, 6):
|
655 |
with gr.Group():
|
656 |
gr.Markdown(f"**Source {i}**")
|
657 |
-
|
|
|
658 |
with gr.Row():
|
659 |
speaker_name = gr.Textbox(label="Speaker Name", placeholder="Name...")
|
660 |
speaker_role = gr.Textbox(label="Role/Position", placeholder="Role...")
|
661 |
audio_video_inputs.extend([audio_file, speaker_name, speaker_role])
|
662 |
all_inputs.extend(audio_video_inputs)
|
663 |
-
logger.info(f"{len(audio_video_inputs)} audio/video inputs created.")
|
664 |
with gr.TabItem("π URLs"):
|
665 |
-
logger.info("Creating URL input tabs.")
|
666 |
gr.Markdown("Add URLs to relevant web pages... Max 5.")
|
667 |
url_inputs = []
|
668 |
for i in range(1, 6):
|
669 |
url_textbox = gr.Textbox(label=f"URL {i}", placeholder="https://...")
|
670 |
url_inputs.append(url_textbox)
|
671 |
all_inputs.extend(url_inputs)
|
672 |
-
logger.info(f"{len(url_inputs)} URL inputs created.")
|
673 |
with gr.TabItem("π± Social Media"):
|
674 |
-
logger.info("Creating social media input tabs.")
|
675 |
gr.Markdown("Add URLs to social media posts... Max 3.")
|
676 |
social_inputs = []
|
677 |
for i in range(1, 4):
|
@@ -683,26 +436,17 @@ def create_demo():
|
|
683 |
social_context_textbox = gr.Textbox(label=f"Context", placeholder="Context...")
|
684 |
social_inputs.extend([social_url_textbox, social_name_textbox, social_context_textbox])
|
685 |
all_inputs.extend(social_inputs)
|
686 |
-
logger.info(f"{len(social_inputs)} social media inputs created.")
|
687 |
|
688 |
-
|
689 |
-
|
690 |
-
logger.info("Creating generate and clear buttons.")
|
691 |
-
generate_button = gr.Button("β¨ Generate News Article", variant="primary")
|
692 |
-
clear_button = gr.Button("π Clear All Inputs")
|
693 |
with gr.Tabs():
|
694 |
with gr.TabItem("π Generated News Article"):
|
695 |
-
logger.info("Creating news output textbox.")
|
696 |
news_output = gr.Textbox(label="Draft News Article", lines=20, show_copy_button=True, interactive=False)
|
697 |
with gr.TabItem("ποΈ Source Transcriptions & Logs"):
|
698 |
-
logger.info("Creating transcriptions/log output textbox.")
|
699 |
transcriptions_output = gr.Textbox(label="Transcriptions and Processing Log", lines=15, show_copy_button=True, interactive=False)
|
700 |
|
701 |
outputs_list = [news_output, transcriptions_output]
|
702 |
-
logger.info("Setting up event handlers.")
|
703 |
-
# AsegΓΊrate de que el botΓ³n llama a la funciΓ³n generate_news (aunque ahora estΓ© simplificada)
|
704 |
generate_button.click(fn=generate_news, inputs=all_inputs, outputs=outputs_list)
|
705 |
-
logger.info("Generate button click handler set.")
|
706 |
|
707 |
def clear_all_inputs_and_outputs():
|
708 |
logger.info("--- Clear All button clicked ---")
|
@@ -713,31 +457,21 @@ def create_demo():
|
|
713 |
elif isinstance(input_comp, gr.File): reset_values.append(None)
|
714 |
else: reset_values.append(None)
|
715 |
reset_values.extend(["", ""])
|
716 |
-
logger.info(
|
717 |
-
|
718 |
-
logger.info("Calling model reset from clear button handler.")
|
719 |
-
model_manager.reset_models(force=True)
|
720 |
-
except Exception as e:
|
721 |
-
logger.error(f"Error resetting models during clear operation: {e}")
|
722 |
-
logger.error(traceback.format_exc())
|
723 |
logger.info("--- Clear All operation finished ---")
|
724 |
return reset_values
|
725 |
|
726 |
clear_button.click(fn=clear_all_inputs_and_outputs, inputs=None, outputs=all_inputs + outputs_list)
|
727 |
-
|
728 |
-
logger.info("--- Gradio interface creation complete ---")
|
729 |
return demo
|
730 |
|
731 |
|
732 |
# --- main execution block remains the same ---
|
733 |
if __name__ == "__main__":
|
734 |
logger.info("--- Running main execution block ---")
|
735 |
-
logger.info("Creating Gradio demo instance...")
|
736 |
news_demo = create_demo()
|
737 |
-
logger.info("Gradio demo instance created.")
|
738 |
-
logger.info("Configuring Gradio queue...")
|
739 |
news_demo.queue()
|
740 |
-
logger.info("Gradio queue configured.")
|
741 |
logger.info("Launching Gradio interface...")
|
742 |
try:
|
743 |
news_demo.launch(server_name="0.0.0.0", server_port=7860)
|
@@ -745,4 +479,4 @@ if __name__ == "__main__":
|
|
745 |
except Exception as launch_err:
|
746 |
logger.error(f"!!! CRITICAL Error during Gradio launch: {launch_err}")
|
747 |
logger.error(traceback.format_exc())
|
748 |
-
logger.info("--- Main execution block potentially finished
|
|
|
22 |
|
23 |
# Configure logging
|
24 |
logging.basicConfig(
|
25 |
+
level=logging.INFO,
|
26 |
+
format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s'
|
27 |
)
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
+
logger.info("--- Starting App ---")
|
31 |
|
32 |
# Login to Hugging Face Hub if token is available
|
33 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
|
|
40 |
logger.error(f"Failed to login to Hugging Face Hub: {e}")
|
41 |
logger.error(traceback.format_exc())
|
42 |
else:
|
43 |
+
logger.warning("HUGGINGFACE_TOKEN environment variable not set.")
|
44 |
|
45 |
|
46 |
class ModelManager:
|
|
|
54 |
return cls._instance
|
55 |
|
56 |
def __init__(self):
|
57 |
+
if not hasattr(self, '_initialized') or not self._initialized:
|
58 |
logger.info("Initializing ModelManager attributes.")
|
59 |
self.tokenizer = None
|
60 |
self.model = None
|
|
|
65 |
self.last_used = time.time()
|
66 |
self.llm_loading = False
|
67 |
self.whisper_loading = False
|
68 |
+
self._initialized = True
|
69 |
|
70 |
def _cleanup_memory(self):
|
|
|
71 |
logger.info("Running garbage collection...")
|
72 |
collected_count = gc.collect()
|
73 |
logger.info(f"Garbage collected ({collected_count} objects).")
|
|
|
77 |
logger.info("CUDA cache cleared.")
|
78 |
|
79 |
def reset_llm(self):
|
|
|
80 |
logger.info("--- Attempting to reset LLM ---")
|
81 |
try:
|
82 |
+
if hasattr(self, 'model') and self.model is not None: del self.model; logger.info("LLM model deleted.")
|
83 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None: del self.tokenizer; logger.info("LLM tokenizer deleted.")
|
84 |
+
if hasattr(self, 'text_pipeline') and self.text_pipeline is not None: del self.text_pipeline; logger.info("LLM pipeline deleted.")
|
85 |
+
self.model = None; self.tokenizer = None; self.text_pipeline = None
|
86 |
+
self.llm_loaded = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
self._cleanup_memory()
|
88 |
logger.info("LLM components reset successfully.")
|
89 |
+
except Exception as e: logger.error(f"!!! ERROR during LLM reset: {e}"); logger.error(traceback.format_exc())
|
|
|
|
|
90 |
|
91 |
def reset_whisper(self):
|
|
|
92 |
logger.info("--- Attempting to reset Whisper ---")
|
93 |
try:
|
94 |
+
if hasattr(self, 'whisper_model') and self.whisper_model is not None: del self.whisper_model; logger.info("Whisper model deleted.")
|
|
|
|
|
|
|
95 |
self.whisper_model = None
|
96 |
+
self.whisper_loaded = False
|
97 |
self._cleanup_memory()
|
98 |
logger.info("Whisper component reset successfully.")
|
99 |
+
except Exception as e: logger.error(f"!!! ERROR during Whisper reset: {e}"); logger.error(traceback.format_exc())
|
|
|
|
|
100 |
|
101 |
@spaces.GPU(duration=120)
|
102 |
def initialize_llm(self):
|
|
|
103 |
logger.info("Attempting to initialize LLM.")
|
104 |
+
if self.llm_loading: logger.info("LLM initialization already in progress."); return True
|
105 |
+
if self.llm_loaded: logger.info("LLM already initialized."); self.last_used = time.time(); return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
self.llm_loading = True
|
107 |
logger.info("Starting LLM initialization...")
|
108 |
try:
|
109 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
110 |
logger.info(f"Using LLM model: {MODEL_NAME}")
|
|
|
|
|
111 |
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, use_fast=True)
|
112 |
+
if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token
|
113 |
+
self.model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, offload_folder="offload", offload_state_dict=True)
|
114 |
+
self.text_pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, torch_dtype=torch.float16, device_map="auto", max_length=1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
logger.info("LLM initialized successfully.")
|
116 |
+
self.last_used = time.time(); self.llm_loaded = True; self.llm_loading = False; return True
|
117 |
+
except Exception as e: logger.error(f"!!! ERROR during LLM initialization: {e}"); logger.error(traceback.format_exc()); self.reset_llm(); self.llm_loading = False; raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
@spaces.GPU(duration=120)
|
120 |
def initialize_whisper(self):
|
|
|
121 |
logger.info("Attempting to initialize Whisper.")
|
122 |
+
if self.whisper_loading: logger.info("Whisper initialization already in progress."); return True
|
123 |
+
if self.whisper_loaded: logger.info("Whisper already initialized."); self.last_used = time.time(); return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
self.whisper_loading = True
|
125 |
logger.info("Starting Whisper initialization...")
|
126 |
try:
|
127 |
WHISPER_MODEL_NAME = "tiny"
|
128 |
+
self.whisper_model = whisper.load_model(WHISPER_MODEL_NAME, device="cuda" if torch.cuda.is_available() else "cpu", download_root="/tmp/whisper")
|
|
|
|
|
|
|
|
|
129 |
logger.info(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
|
130 |
+
self.last_used = time.time(); self.whisper_loaded = True; self.whisper_loading = False; return True
|
131 |
+
except Exception as e: logger.error(f"!!! ERROR during Whisper initialization: {e}"); logger.error(traceback.format_exc()); self.reset_whisper(); self.whisper_loading = False; raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def check_llm_initialized(self):
|
|
|
134 |
logger.info("Checking if LLM is initialized.")
|
135 |
if not self.llm_loaded:
|
136 |
logger.info("LLM not initialized, attempting initialization...")
|
137 |
+
if not self.llm_loading: self.initialize_llm(); logger.info("LLM initialization completed by check_llm_initialized.")
|
|
|
|
|
138 |
else:
|
139 |
+
logger.info("LLM initialization already in progress. Waiting briefly.")
|
140 |
time.sleep(10)
|
141 |
+
if not self.llm_loaded: raise RuntimeError("LLM initialization timed out or failed after waiting.")
|
142 |
+
else: logger.info("LLM seems initialized now after waiting.")
|
143 |
+
else: logger.info("LLM was already initialized.")
|
|
|
|
|
|
|
|
|
144 |
self.last_used = time.time()
|
145 |
|
|
|
146 |
def check_whisper_initialized(self):
|
|
|
147 |
logger.info("Checking if Whisper is initialized.")
|
148 |
if not self.whisper_loaded:
|
149 |
logger.info("Whisper model not initialized, attempting initialization...")
|
150 |
+
if not self.whisper_loading: self.initialize_whisper(); logger.info("Whisper initialization completed by check_whisper_initialized.")
|
|
|
|
|
151 |
else:
|
152 |
+
logger.info("Whisper initialization already in progress. Waiting briefly.")
|
153 |
time.sleep(10)
|
154 |
+
if not self.whisper_loaded: raise RuntimeError("Whisper initialization timed out or failed after waiting.")
|
155 |
+
else: logger.info("Whisper seems initialized now after waiting.")
|
156 |
+
else: logger.info("Whisper was already initialized.")
|
|
|
|
|
|
|
|
|
157 |
self.last_used = time.time()
|
158 |
|
159 |
def reset_models(self, force=False):
|
160 |
+
if force: logger.info("Forcing reset of all models."); self.reset_llm(); self.reset_whisper()
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
# Create global model manager instance
|
163 |
logger.info("Creating global ModelManager instance.")
|
164 |
model_manager = ModelManager()
|
165 |
|
|
|
166 |
# --- Functions: download_social_media_video, convert_video_to_audio, etc. ---
|
167 |
+
# --- Kept exactly the same as the previous full version ---
|
|
|
|
|
168 |
@lru_cache(maxsize=16)
|
169 |
def download_social_media_video(url):
|
170 |
+
logger.info(f"Attempting social download: {url}")
|
|
|
171 |
temp_dir = tempfile.mkdtemp()
|
172 |
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
|
173 |
final_audio_file_path = None
|
174 |
+
ydl_opts = {'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}], 'outtmpl': output_template, 'quiet': True, 'no_warnings': True, 'nocheckcertificate': True, 'retries': 3, 'socket_timeout': 15, 'cachedir': False}
|
|
|
|
|
|
|
175 |
try:
|
176 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True)
|
177 |
+
found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
|
178 |
+
if not found_files: raise FileNotFoundError(f"Downloaded MP3 not found in {temp_dir}")
|
179 |
+
final_audio_file_path = os.path.join(temp_dir, found_files[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
with open(final_audio_file_path, 'rb') as f: audio_content = f.read()
|
|
|
181 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
|
182 |
+
temp_output_file.write(audio_content); final_path_for_gradio = temp_output_file.name
|
183 |
+
logger.info(f"Social audio saved to: {final_path_for_gradio}")
|
|
|
184 |
return final_path_for_gradio
|
185 |
+
except yt_dlp.utils.DownloadError as e: logger.error(f"yt-dlp error {url}: {e}"); return None
|
186 |
+
except Exception as e: logger.error(f"Download error {url}: {e}"); logger.error(traceback.format_exc()); return None
|
|
|
|
|
|
|
|
|
|
|
187 |
finally:
|
188 |
if os.path.exists(temp_dir):
|
189 |
+
try: import shutil; shutil.rmtree(temp_dir)
|
190 |
+
except Exception as cleanup_e: logger.warning(f"Cleanup failed {temp_dir}: {cleanup_e}")
|
|
|
|
|
|
|
191 |
|
192 |
def convert_video_to_audio(video_file_path):
|
193 |
+
logger.info(f"Converting video: {video_file_path}")
|
|
|
194 |
output_file_path = None
|
195 |
try:
|
196 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: output_file_path = temp_file.name
|
|
|
197 |
command = ["ffmpeg", "-i", video_file_path, "-vn", "-acodec", "libmp3lame", "-ab", "192k", "-ar", "44100", "-ac", "2", output_file_path, "-y", "-loglevel", "error"]
|
198 |
+
subprocess.run(command, check=True, capture_output=True, text=True, timeout=120)
|
199 |
+
if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0: raise RuntimeError("ffmpeg output empty")
|
200 |
+
logger.info(f"Video converted to: {output_file_path}")
|
|
|
|
|
|
|
|
|
201 |
return output_file_path
|
202 |
+
except subprocess.CalledProcessError as e: logger.error(f"ffmpeg fail {video_file_path}: {e.stderr}"); raise RuntimeError(f"ffmpeg failed: {e.stderr}") from e
|
203 |
+
except subprocess.TimeoutExpired as e: logger.error(f"ffmpeg timeout {video_file_path}"); raise RuntimeError("ffmpeg timed out") from e
|
204 |
+
except Exception as e: logger.error(f"Video conversion error {video_file_path}: {e}"); logger.error(traceback.format_exc()); raise
|
205 |
+
finally:
|
206 |
+
if output_file_path and os.path.exists(output_file_path) and ( 'e' in locals() or (not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
try: os.remove(output_file_path)
|
208 |
except: pass
|
|
|
209 |
|
210 |
def preprocess_audio(input_audio_path):
|
211 |
+
logger.info(f"Preprocessing audio: {input_audio_path}")
|
|
|
212 |
output_path = None
|
213 |
try:
|
214 |
+
if not os.path.exists(input_audio_path): raise FileNotFoundError(f"Preprocessing input not found: {input_audio_path}")
|
|
|
|
|
|
|
215 |
audio = AudioSegment.from_file(input_audio_path)
|
|
|
|
|
|
|
216 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
217 |
+
output_path = temp_file.name; audio.export(output_path, format="mp3")
|
218 |
+
logger.info(f"Audio preprocessed to: {output_path}")
|
|
|
219 |
return output_path
|
220 |
+
except FileNotFoundError as e: logger.error(f"Preprocessing file not found: {e}"); raise
|
221 |
+
except Exception as e: logger.error(f"Preprocessing error {input_audio_path}: {e}"); logger.error(traceback.format_exc()); raise
|
222 |
+
finally:
|
223 |
+
if 'e' in locals() and output_path and os.path.exists(output_path):
|
224 |
+
try: os.remove(output_path)
|
225 |
+
except: pass
|
|
|
|
|
|
|
|
|
226 |
|
227 |
@spaces.GPU(duration=300)
|
228 |
def transcribe_audio_or_video(file_input):
|
229 |
+
logger.info(f"--- Starting transcription: {type(file_input)} ---")
|
230 |
+
audio_file_to_transcribe = None; temp_files_to_clean = []; transcription = ""
|
|
|
|
|
231 |
try:
|
232 |
+
logger.info("Checking Whisper model..."); model_manager.check_whisper_initialized()
|
|
|
|
|
|
|
233 |
if file_input is None: return ""
|
234 |
+
if isinstance(file_input, str): input_path = file_input
|
235 |
+
elif hasattr(file_input, 'name') and file_input.name: input_path = file_input.name
|
236 |
+
else: raise TypeError("Invalid input type.")
|
237 |
+
if not os.path.exists(input_path): raise FileNotFoundError(f"Input not found: {input_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
file_extension = os.path.splitext(input_path)[1].lower()
|
|
|
|
|
239 |
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
|
|
|
240 |
converted_audio_path = convert_video_to_audio(input_path)
|
241 |
temp_files_to_clean.append(converted_audio_path); audio_file_to_process = converted_audio_path
|
242 |
+
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac']: audio_file_to_process = input_path
|
243 |
+
else: raise ValueError(f"Unsupported type: {file_extension}")
|
|
|
|
|
|
|
244 |
try:
|
|
|
245 |
preprocessed_audio_path = preprocess_audio(audio_file_to_process)
|
246 |
if preprocessed_audio_path != audio_file_to_process: temp_files_to_clean.append(preprocessed_audio_path)
|
247 |
audio_file_to_transcribe = preprocessed_audio_path
|
248 |
+
except Exception as preprocess_err: logger.warning(f"Preprocessing failed ({preprocess_err}), using original."); audio_file_to_transcribe = audio_file_to_process
|
249 |
+
if not os.path.exists(audio_file_to_transcribe): raise FileNotFoundError(f"File to transcribe lost: {audio_file_to_transcribe}")
|
250 |
+
logger.info(f"Transcribing: {audio_file_to_transcribe}")
|
|
|
|
|
|
|
|
|
|
|
251 |
with torch.inference_mode():
|
252 |
+
use_fp16 = torch.cuda.is_available()
|
253 |
result = model_manager.whisper_model.transcribe(audio_file_to_transcribe, fp16=use_fp16)
|
254 |
+
if not result or "text" not in result: raise RuntimeError("Transcription empty result")
|
255 |
+
transcription = result.get("text", "")
|
256 |
+
logger.info(f"Transcription success: '{transcription[:100]}...'")
|
257 |
+
except Exception as e: logger.error(f"!!! Transcription failed: {e}"); logger.error(traceback.format_exc()); transcription = f"Error during transcription: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
finally:
|
259 |
+
logger.debug(f"--- Cleaning {len(temp_files_to_clean)} temp transcription files ---")
|
260 |
for temp_file in temp_files_to_clean:
|
261 |
try:
|
262 |
+
if os.path.exists(temp_file): os.remove(temp_file)
|
263 |
+
except Exception as e: logger.warning(f"Cleanup failed {temp_file}: {e}")
|
|
|
264 |
return transcription
|
265 |
|
266 |
@lru_cache(maxsize=16)
|
267 |
def read_document(document_path):
|
268 |
+
logger.info(f"Reading document: {document_path}")
|
|
|
269 |
try:
|
270 |
+
if not os.path.exists(document_path): raise FileNotFoundError(f"Doc not found: {document_path}")
|
271 |
+
ext = os.path.splitext(document_path)[1].lower(); logger.debug(f"Doc type: {ext}")
|
272 |
content = ""
|
273 |
+
if ext == ".pdf":
|
|
|
274 |
doc = fitz.open(document_path)
|
275 |
+
if doc.is_encrypted and not doc.authenticate(""): raise ValueError("Encrypted PDF")
|
|
|
|
|
276 |
content = "\n".join([page.get_text() for page in doc]); doc.close()
|
277 |
+
elif ext == ".docx": doc = docx.Document(document_path); content = "\n".join([p.text for p in doc.paragraphs])
|
278 |
+
elif ext in (".xlsx", ".xls"):
|
279 |
+
xls = pd.ExcelFile(document_path); parts = []
|
280 |
+
for sheet in xls.sheet_names: df = pd.read_excel(xls, sheet_name=sheet); parts.append(f"--- {sheet} ---\n{df.to_string()}")
|
281 |
+
content = "\n\n".join(parts).strip()
|
282 |
+
elif ext == ".csv":
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
try:
|
284 |
+
with open(document_path, 'rb') as f: import chardet; enc = chardet.detect(f.read())['encoding']
|
285 |
+
df = pd.read_csv(document_path, encoding=enc)
|
286 |
+
except Exception as e1:
|
287 |
+
logger.warning(f"CSV parse failed ({e1}), trying alternatives...")
|
288 |
+
try: df = pd.read_csv(document_path, sep=';', encoding=enc)
|
289 |
+
except Exception as e2: df = pd.read_csv(document_path, encoding='latin1') # Last resort
|
|
|
|
|
|
|
|
|
290 |
content = df.to_string()
|
291 |
+
else: return "Unsupported file type."
|
292 |
+
logger.info(f"Doc read success. Length: {len(content)}")
|
293 |
return content
|
294 |
+
except Exception as e: logger.error(f"!!! Read doc error: {e}"); logger.error(traceback.format_exc()); return f"Error reading document: {e}"
|
|
|
|
|
295 |
|
296 |
@lru_cache(maxsize=16)
|
297 |
def read_url(url):
|
298 |
+
logger.info(f"Reading URL: {url}")
|
|
|
299 |
if not url or not url.strip().startswith('http'): return ""
|
300 |
try:
|
301 |
+
headers = {'User-Agent': 'Mozilla/5.0 ...', 'Accept': 'text/html...', 'Accept-Language': 'en-US,en;q=0.9', 'Connection': 'keep-alive'}
|
|
|
302 |
response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
|
|
|
303 |
response.raise_for_status()
|
304 |
+
ct = response.headers.get('content-type', '').lower()
|
305 |
+
if not ('html' in ct or 'text' in ct): return f"Error: Non-text content type: {ct}"
|
306 |
+
enc = response.encoding if response.encoding else response.apparent_encoding
|
307 |
+
html = response.content.decode(enc or 'utf-8', errors='ignore')
|
308 |
+
soup = BeautifulSoup(html, 'html.parser')
|
309 |
+
for tag in soup(["script", "style", "meta", "noscript", "iframe", "header", "footer", "nav", "aside", "form", "button", "link", "head"]): tag.extract()
|
310 |
+
main = (soup.find("main") or soup.find("article") or soup.find("div", class_=["content", "main", "post-content", "entry-content", "article-body", "story-content"]) or soup.find("div", id=["content", "main", "article", "story"]))
|
311 |
+
text = main.get_text(separator='\n', strip=True) if main else soup.body.get_text(separator='\n', strip=True) if soup.body else soup.get_text(separator='\n', strip=True)
|
312 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]; cleaned = "\n".join(lines)
|
313 |
+
if not cleaned: return "Error: Could not extract text."
|
314 |
+
max_c = 15000; final = (cleaned[:max_c] + "... [truncated]") if len(cleaned) > max_c else cleaned
|
315 |
+
logger.info(f"URL read success. Length: {len(final)}")
|
316 |
+
return final
|
317 |
+
except Exception as e: logger.error(f"!!! Read URL error: {e}"); logger.error(traceback.format_exc()); return f"Error reading URL: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
def process_social_media_url(url):
|
320 |
+
logger.info(f"--- Processing social URL: {url} ---")
|
|
|
321 |
if not url or not url.strip().startswith('http'): return None
|
322 |
+
text = None; video = None; audio_file = None
|
323 |
+
try: text_res = read_url(url); text = text_res if text_res and not text_res.startswith("Error:") else None
|
324 |
+
except Exception as e: logger.error(f"Social text read error: {e}")
|
|
|
|
|
|
|
|
|
|
|
325 |
try:
|
326 |
+
audio_file = download_social_media_video(url)
|
327 |
+
if audio_file: video_res = transcribe_audio_or_video(audio_file); video = video_res if video_res and not video_res.startswith("Error:") else None
|
328 |
+
except Exception as e: logger.error(f"Social audio proc error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
finally:
|
330 |
+
if audio_file and os.path.exists(audio_file):
|
331 |
+
try: os.remove(audio_file)
|
332 |
+
except Exception as e: logger.warning(f"Social cleanup fail {audio_file}: {e}")
|
333 |
+
logger.debug(f"--- Finished social URL: {url} ---")
|
334 |
+
if text or video: return {"text": text or "", "video": video or ""}
|
335 |
+
else: return None
|
|
|
336 |
|
337 |
# ==============================================================
|
338 |
# ========= SIMPLIFIED generate_news FOR DEBUGGING =============
|
|
|
374 |
# ==============================================================
|
375 |
|
376 |
|
377 |
+
# --- create_demo function ---
|
378 |
+
# --- MODIFIED: Removed file_types from gr.File ---
|
379 |
def create_demo():
|
380 |
"""Creates the Gradio interface"""
|
381 |
logger.info("--- Creating Gradio interface ---")
|
|
|
385 |
all_inputs = []
|
386 |
with gr.Row():
|
387 |
with gr.Column(scale=2):
|
|
|
388 |
instructions = gr.Textbox(label="Instructions for the News Article", placeholder="Enter specific instructions...", lines=2)
|
389 |
all_inputs.append(instructions)
|
|
|
390 |
facts = gr.Textbox(label="Main Facts", placeholder="Describe the most important facts...", lines=4)
|
391 |
all_inputs.append(facts)
|
392 |
with gr.Row():
|
|
|
393 |
size_slider = gr.Slider(label="Approximate Length (words)", minimum=100, maximum=700, value=250, step=50)
|
394 |
all_inputs.append(size_slider)
|
|
|
395 |
tone_dropdown = gr.Dropdown(label="Tone of the News Article", choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"], value="neutral")
|
396 |
all_inputs.append(tone_dropdown)
|
397 |
with gr.Column(scale=3):
|
398 |
with gr.Tabs():
|
399 |
with gr.TabItem("π Documents"):
|
|
|
400 |
gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
|
401 |
doc_inputs = []
|
402 |
for i in range(1, 6):
|
403 |
+
# *** CHANGED: Removed file_types ***
|
404 |
+
doc_file = gr.File(label=f"Document {i}", file_count="single")
|
405 |
doc_inputs.append(doc_file)
|
406 |
all_inputs.extend(doc_inputs)
|
|
|
407 |
with gr.TabItem("π Audio/Video"):
|
|
|
408 |
gr.Markdown("Upload audio or video files... Max 5 sources.")
|
409 |
audio_video_inputs = []
|
410 |
for i in range(1, 6):
|
411 |
with gr.Group():
|
412 |
gr.Markdown(f"**Source {i}**")
|
413 |
+
# *** CHANGED: Removed file_types ***
|
414 |
+
audio_file = gr.File(label=f"Audio/Video File {i}")
|
415 |
with gr.Row():
|
416 |
speaker_name = gr.Textbox(label="Speaker Name", placeholder="Name...")
|
417 |
speaker_role = gr.Textbox(label="Role/Position", placeholder="Role...")
|
418 |
audio_video_inputs.extend([audio_file, speaker_name, speaker_role])
|
419 |
all_inputs.extend(audio_video_inputs)
|
|
|
420 |
with gr.TabItem("π URLs"):
|
|
|
421 |
gr.Markdown("Add URLs to relevant web pages... Max 5.")
|
422 |
url_inputs = []
|
423 |
for i in range(1, 6):
|
424 |
url_textbox = gr.Textbox(label=f"URL {i}", placeholder="https://...")
|
425 |
url_inputs.append(url_textbox)
|
426 |
all_inputs.extend(url_inputs)
|
|
|
427 |
with gr.TabItem("π± Social Media"):
|
|
|
428 |
gr.Markdown("Add URLs to social media posts... Max 3.")
|
429 |
social_inputs = []
|
430 |
for i in range(1, 4):
|
|
|
436 |
social_context_textbox = gr.Textbox(label=f"Context", placeholder="Context...")
|
437 |
social_inputs.extend([social_url_textbox, social_name_textbox, social_context_textbox])
|
438 |
all_inputs.extend(social_inputs)
|
|
|
439 |
|
440 |
+
generate_button = gr.Button("β¨ Generate News Article", variant="primary")
|
441 |
+
clear_button = gr.Button("π Clear All Inputs")
|
|
|
|
|
|
|
442 |
with gr.Tabs():
|
443 |
with gr.TabItem("π Generated News Article"):
|
|
|
444 |
news_output = gr.Textbox(label="Draft News Article", lines=20, show_copy_button=True, interactive=False)
|
445 |
with gr.TabItem("ποΈ Source Transcriptions & Logs"):
|
|
|
446 |
transcriptions_output = gr.Textbox(label="Transcriptions and Processing Log", lines=15, show_copy_button=True, interactive=False)
|
447 |
|
448 |
outputs_list = [news_output, transcriptions_output]
|
|
|
|
|
449 |
generate_button.click(fn=generate_news, inputs=all_inputs, outputs=outputs_list)
|
|
|
450 |
|
451 |
def clear_all_inputs_and_outputs():
|
452 |
logger.info("--- Clear All button clicked ---")
|
|
|
457 |
elif isinstance(input_comp, gr.File): reset_values.append(None)
|
458 |
else: reset_values.append(None)
|
459 |
reset_values.extend(["", ""])
|
460 |
+
try: logger.info("Calling model reset from clear button handler."); model_manager.reset_models(force=True)
|
461 |
+
except Exception as e: logger.error(f"Error resetting models during clear: {e}")
|
|
|
|
|
|
|
|
|
|
|
462 |
logger.info("--- Clear All operation finished ---")
|
463 |
return reset_values
|
464 |
|
465 |
clear_button.click(fn=clear_all_inputs_and_outputs, inputs=None, outputs=all_inputs + outputs_list)
|
466 |
+
logger.info("--- Gradio interface creation complete ---")
|
|
|
467 |
return demo
|
468 |
|
469 |
|
470 |
# --- main execution block remains the same ---
|
471 |
if __name__ == "__main__":
|
472 |
logger.info("--- Running main execution block ---")
|
|
|
473 |
news_demo = create_demo()
|
|
|
|
|
474 |
news_demo.queue()
|
|
|
475 |
logger.info("Launching Gradio interface...")
|
476 |
try:
|
477 |
news_demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
479 |
except Exception as launch_err:
|
480 |
logger.error(f"!!! CRITICAL Error during Gradio launch: {launch_err}")
|
481 |
logger.error(traceback.format_exc())
|
482 |
+
logger.info("--- Main execution block potentially finished ---")
|