Spaces:
Sleeping
Sleeping
File size: 58,496 Bytes
1b167bf 4e5d878 1b167bf 432f68e 951c395 1b167bf 951c395 ab6abb0 3e010de 432f68e 1b167bf 3e010de 432f68e 3e010de 951c395 432f68e 951c395 432f68e 951c395 432f68e 951c395 3e010de 432f68e 3e010de 432f68e 951c395 432f68e 7a1615b 432f68e 951c395 432f68e 7a1615b 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 1b167bf 432f68e 3e010de 432f68e 3e010de 951c395 432f68e c59e337 432f68e d283cbc 432f68e c59e337 3e010de 432f68e 951c395 3e010de 432f68e 951c395 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 951c395 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 4e5d878 1b167bf 432f68e 1b167bf 432f68e 4e5d878 432f68e 4e5d878 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 3e010de 432f68e 1b167bf 432f68e 3e010de 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 3e010de 432f68e 1b167bf 432f68e 3e010de 432f68e 3e010de 432f68e 1b167bf 432f68e 1b167bf 432f68e 3e010de 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e f1d02c3 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 1b167bf 432f68e 1b167bf 432f68e 3e010de 432f68e ab6abb0 432f68e 1b167bf 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 1b167bf 432f68e 1b167bf 432f68e 1b167bf 7a1615b 432f68e 7a1615b 432f68e 7a1615b 432f68e 7a1615b 432f68e 7a1615b 432f68e 1b167bf 432f68e 9b37297 3e010de 432f68e ab6abb0 1b167bf 432f68e 3e010de f1d02c3 432f68e 1b167bf f1d02c3 432f68e 1b167bf 432f68e f1d02c3 432f68e 1b167bf 432f68e 3e010de 432f68e f1d02c3 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 1b167bf f1d02c3 432f68e f1d02c3 432f68e f1d02c3 432f68e f7aec95 432f68e 3e010de 432f68e 3e010de f1d02c3 432f68e f1d02c3 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 1b167bf 432f68e 1b167bf 432f68e 3e010de f1d02c3 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 3e010de 432f68e 1b167bf 432f68e 3e010de 432f68e f1d02c3 432f68e 3e010de 432f68e f1d02c3 432f68e 3e010de 1b167bf 432f68e 1b167bf 432f68e 1b167bf 432f68e 3e010de 1b167bf 432f68e 1b167bf 432f68e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 |
import spaces
import gradio as gr
import logging
import os
import tempfile
import pandas as pd
import requests
from bs4 import BeautifulSoup
import torch
import whisper
import subprocess
from pydub import AudioSegment
import fitz # PyMuPDF
import docx
import yt_dlp
from functools import lru_cache
import gc
import time
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import traceback # For detailed error logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Login to Hugging Face Hub if token is available
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
if HUGGINGFACE_TOKEN:
try:
login(token=HUGGINGFACE_TOKEN)
logger.info("Successfully logged in to Hugging Face Hub.")
except Exception as e:
logger.error(f"Failed to login to Hugging Face Hub: {e}")
class ModelManager:
_instance = None
def __new__(cls):
if cls._instance is None:
cls._instance = super(ModelManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self.tokenizer = None
self.model = None
self.text_pipeline = None # Renamed for clarity
self.whisper_model = None
self._initialized = True
self.last_used = time.time()
self.llm_loading = False
self.whisper_loading = False
@spaces.GPU(duration=120) # Increased duration for potentially long loads
def initialize_llm(self):
"""Initialize LLM model with standard transformers"""
if self.llm_loading:
logger.info("LLM initialization already in progress.")
return True # Assume it will succeed or fail elsewhere
if self.tokenizer and self.model and self.text_pipeline:
logger.info("LLM already initialized.")
self.last_used = time.time()
return True
self.llm_loading = True
try:
# Use small model for ZeroGPU compatibility
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
logger.info("Loading LLM tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=HUGGINGFACE_TOKEN,
use_fast=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Basic memory settings for ZeroGPU
logger.info("Loading LLM model...")
self.model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
token=HUGGINGFACE_TOKEN,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
# Optimizations for ZeroGPU
# max_memory={0: "4GB"}, # Removed for better auto handling initially
offload_folder="offload",
offload_state_dict=True
)
# Create text generation pipeline
logger.info("Creating LLM text generation pipeline...")
self.text_pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
torch_dtype=torch.float16,
device_map="auto",
max_length=1024 # Default max length
)
logger.info("LLM initialized successfully")
self.last_used = time.time()
self.llm_loading = False
return True
except Exception as e:
logger.error(f"Error initializing LLM: {str(e)}")
logger.error(traceback.format_exc()) # Log full traceback
# Reset partially loaded components
self.tokenizer = None
self.model = None
self.text_pipeline = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
self.llm_loading = False
raise # Re-raise the exception to signal failure
@spaces.GPU(duration=120) # Increased duration
def initialize_whisper(self):
"""Initialize Whisper model for audio transcription"""
if self.whisper_loading:
logger.info("Whisper initialization already in progress.")
return True
if self.whisper_model:
logger.info("Whisper already initialized.")
self.last_used = time.time()
return True
self.whisper_loading = True
try:
logger.info("Loading Whisper model...")
# Using tiny model for efficiency but can be changed based on needs
# Specify weights_only=True to address the FutureWarning
# Note: Whisper's load_model might not directly support weights_only yet.
# If it errors, remove the weights_only=True. The warning is mainly informative.
# Let's attempt without weights_only first as whisper might handle it internally
self.whisper_model = whisper.load_model(
"tiny", # Consider "base" for better accuracy if "tiny" struggles
device="cuda" if torch.cuda.is_available() else "cpu",
download_root="/tmp/whisper" # Use persistent storage if available/needed
)
logger.info("Whisper model initialized successfully")
self.last_used = time.time()
self.whisper_loading = False
return True
except Exception as e:
logger.error(f"Error initializing Whisper: {str(e)}")
logger.error(traceback.format_exc())
self.whisper_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
self.whisper_loading = False
raise
def check_llm_initialized(self):
"""Check if LLM is initialized and initialize if needed"""
if self.tokenizer is None or self.model is None or self.text_pipeline is None:
logger.info("LLM not initialized, initializing...")
if not self.llm_loading: # Prevent re-entry if already loading
self.initialize_llm()
else:
logger.info("LLM initialization is already in progress by another request.")
# Optional: Wait a bit for the other process to finish
time.sleep(5)
if self.tokenizer is None or self.model is None or self.text_pipeline is None:
raise RuntimeError("LLM initialization timed out or failed.")
self.last_used = time.time()
def check_whisper_initialized(self):
"""Check if Whisper model is initialized and initialize if needed"""
if self.whisper_model is None:
logger.info("Whisper model not initialized, initializing...")
if not self.whisper_loading: # Prevent re-entry
self.initialize_whisper()
else:
logger.info("Whisper initialization is already in progress by another request.")
time.sleep(5)
if self.whisper_model is None:
raise RuntimeError("Whisper initialization timed out or failed.")
self.last_used = time.time()
def reset_models(self, force=False):
"""Reset models to free memory if they haven't been used recently"""
current_time = time.time()
# Only reset if forced or models haven't been used for 10 minutes (600 seconds)
if force or (current_time - self.last_used > 600):
try:
logger.info("Resetting models to free memory...")
# Check and delete attributes safely
if hasattr(self, 'model') and self.model is not None:
del self.model
self.model = None
logger.info("LLM model deleted.")
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
del self.tokenizer
self.tokenizer = None
logger.info("LLM tokenizer deleted.")
if hasattr(self, 'text_pipeline') and self.text_pipeline is not None:
del self.text_pipeline
self.text_pipeline = None
logger.info("LLM pipeline deleted.")
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
del self.whisper_model
self.whisper_model = None
logger.info("Whisper model deleted.")
# Explicitly clear CUDA cache and collect garbage
if torch.cuda.is_available():
torch.cuda.empty_cache()
# torch.cuda.synchronize() # May not be needed and can slow down
logger.info("CUDA cache cleared.")
gc.collect()
logger.info("Garbage collected. Models reset successfully.")
self._initialized = False # Mark as uninitialized so they reload on next use
except Exception as e:
logger.error(f"Error resetting models: {str(e)}")
logger.error(traceback.format_exc())
# Create global model manager instance
model_manager = ModelManager()
@lru_cache(maxsize=16) # Reduced cache size slightly
def download_social_media_video(url):
"""Download audio from a social media video URL."""
temp_dir = tempfile.mkdtemp()
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192', # Standard quality
}],
'outtmpl': output_template,
'quiet': True,
'no_warnings': True,
'nocheckcertificate': True, # Sometimes needed for tricky sites
'retries': 3, # Add retries
'socket_timeout': 15, # Timeout
}
try:
logger.info(f"Attempting to download audio from: {url}")
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
# Construct the expected final filename after postprocessing
audio_file = os.path.join(temp_dir, f"{info_dict['id']}.mp3")
if not os.path.exists(audio_file):
# Fallback if filename doesn't match exactly (e.g., webm -> mp3)
found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
if found_files:
audio_file = os.path.join(temp_dir, found_files[0])
else:
raise FileNotFoundError(f"Could not find downloaded MP3 in {temp_dir}")
logger.info(f"Audio downloaded successfully: {audio_file}")
# Read the file content to return, as the temp dir might be cleaned up
with open(audio_file, 'rb') as f:
audio_content = f.read()
# Clean up the temporary directory and file
try:
os.remove(audio_file)
os.rmdir(temp_dir)
except OSError as e:
logger.warning(f"Could not completely clean up temp download files: {e}")
# Save the content to a new temporary file that Gradio can handle
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
temp_output_file.write(audio_content)
final_path = temp_output_file.name
logger.info(f"Audio saved to temporary file: {final_path}")
return final_path
except yt_dlp.utils.DownloadError as e:
logger.error(f"yt-dlp download error for {url}: {str(e)}")
# Clean up temp dir on error
try:
if os.path.exists(temp_dir):
import shutil
shutil.rmtree(temp_dir)
except Exception as cleanup_e:
logger.warning(f"Error during cleanup after download failure: {cleanup_e}")
return None # Return None to indicate failure
except Exception as e:
logger.error(f"Unexpected error downloading video from {url}: {str(e)}")
logger.error(traceback.format_exc())
# Clean up temp dir on error
try:
if os.path.exists(temp_dir):
import shutil
shutil.rmtree(temp_dir)
except Exception as cleanup_e:
logger.warning(f"Error during cleanup after download failure: {cleanup_e}")
return None # Return None
def convert_video_to_audio(video_file_path):
"""Convert a video file to audio using ffmpeg directly."""
try:
# Create a temporary file path for the output MP3
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
output_file_path = temp_file.name
logger.info(f"Converting video '{video_file_path}' to audio '{output_file_path}'")
# Use ffmpeg directly via subprocess
command = [
"ffmpeg",
"-i", video_file_path,
"-vn", # No video
"-acodec", "libmp3lame", # Specify MP3 codec
"-ab", "192k", # Audio bitrate
"-ar", "44100", # Audio sample rate
"-ac", "2", # Stereo audio
output_file_path,
"-y", # Overwrite output file if it exists
"-loglevel", "error" # Suppress verbose ffmpeg output
]
process = subprocess.run(command, check=True, capture_output=True, text=True)
logger.info(f"ffmpeg conversion successful for {video_file_path}.")
logger.debug(f"ffmpeg stdout: {process.stdout}")
logger.debug(f"ffmpeg stderr: {process.stderr}")
# Verify output file exists and has size
if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0:
raise RuntimeError(f"ffmpeg conversion failed: Output file '{output_file_path}' not created or is empty.")
logger.info(f"Video converted to audio: {output_file_path}")
return output_file_path
except subprocess.CalledProcessError as e:
logger.error(f"ffmpeg command failed with exit code {e.returncode}")
logger.error(f"ffmpeg stderr: {e.stderr}")
logger.error(f"ffmpeg stdout: {e.stdout}")
# Clean up potentially empty output file
if os.path.exists(output_file_path):
os.remove(output_file_path)
raise RuntimeError(f"ffmpeg conversion failed: {e.stderr}") from e
except Exception as e:
logger.error(f"Error converting video '{video_file_path}': {str(e)}")
logger.error(traceback.format_exc())
# Clean up potentially created output file
if 'output_file_path' in locals() and os.path.exists(output_file_path):
os.remove(output_file_path)
raise # Re-raise the exception
def preprocess_audio(input_audio_path):
"""Preprocess the audio file (e.g., normalize volume)."""
try:
logger.info(f"Preprocessing audio file: {input_audio_path}")
audio = AudioSegment.from_file(input_audio_path)
# Apply normalization (optional, adjust target dBFS as needed)
# Target loudness: -20 dBFS. Adjust gain based on current loudness.
# change_in_dBFS = -20.0 - audio.dBFS
# audio = audio.apply_gain(change_in_dBFS)
# Export to a new temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
output_path = temp_file.name
audio.export(output_path, format="mp3")
logger.info(f"Audio preprocessed and saved to: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error preprocessing audio '{input_audio_path}': {str(e)}")
logger.error(traceback.format_exc())
# Return original path if preprocessing fails? Or raise error?
# Let's raise the error to signal failure clearly.
raise
@spaces.GPU(duration=300) # Allow more time for transcription
def transcribe_audio_or_video(file_input):
"""Transcribe an audio or video file (local path or Gradio File object)."""
audio_file_to_transcribe = None
original_input_path = None
temp_files_to_clean = []
try:
model_manager.check_whisper_initialized()
if file_input is None:
logger.info("No file input provided for transcription.")
return "" # Return empty string for None input
# Determine input type and get file path
if isinstance(file_input, str): # Input is a path
original_input_path = file_input
logger.info(f"Processing path input: {original_input_path}")
if not os.path.exists(original_input_path):
logger.error(f"Input file path does not exist: {original_input_path}")
raise FileNotFoundError(f"Input file not found: {original_input_path}")
input_path = original_input_path
elif hasattr(file_input, 'name'): # Input is a Gradio File object
original_input_path = file_input.name
logger.info(f"Processing Gradio file input: {original_input_path}")
input_path = original_input_path # Gradio usually provides a temp path
else:
logger.error(f"Unsupported input type for transcription: {type(file_input)}")
raise TypeError("Invalid input type for transcription. Expected file path or Gradio File object.")
file_extension = os.path.splitext(input_path)[1].lower()
# Check if it's a video file that needs conversion
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
logger.info(f"Detected video file ({file_extension}), converting to audio...")
converted_audio_path = convert_video_to_audio(input_path)
temp_files_to_clean.append(converted_audio_path)
audio_file_to_process = converted_audio_path
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a']:
logger.info(f"Detected audio file ({file_extension}).")
audio_file_to_process = input_path
else:
logger.error(f"Unsupported file extension for transcription: {file_extension}")
raise ValueError(f"Unsupported file type: {file_extension}")
# Preprocess the audio (optional, could be skipped if causing issues)
try:
preprocessed_audio_path = preprocess_audio(audio_file_to_process)
# If preprocessing creates a new file different from the input, add it to cleanup
if preprocessed_audio_path != audio_file_to_process:
temp_files_to_clean.append(preprocessed_audio_path)
audio_file_to_transcribe = preprocessed_audio_path
except Exception as preprocess_err:
logger.warning(f"Audio preprocessing failed: {preprocess_err}. Using original/converted audio.")
audio_file_to_transcribe = audio_file_to_process # Fallback
logger.info(f"Transcribing audio file: {audio_file_to_transcribe}")
if not os.path.exists(audio_file_to_transcribe):
raise FileNotFoundError(f"Audio file to transcribe not found: {audio_file_to_transcribe}")
# Perform transcription
with torch.inference_mode(): # Ensure inference mode for efficiency
# Use fp16 if available on CUDA
use_fp16 = torch.cuda.is_available()
result = model_manager.whisper_model.transcribe(
audio_file_to_transcribe,
fp16=use_fp16
)
if not result:
raise RuntimeError("Transcription failed to produce results")
transcription = result.get("text", "Error: Transcription result empty")
# Limit transcription length shown in logs
log_transcription = (transcription[:100] + '...') if len(transcription) > 100 else transcription
logger.info(f"Transcription completed: {log_transcription}")
return transcription
except FileNotFoundError as e:
logger.error(f"File not found error during transcription: {e}")
return f"Error: Input file not found ({e})"
except ValueError as e:
logger.error(f"Value error during transcription: {e}")
return f"Error: Unsupported file type ({e})"
except TypeError as e:
logger.error(f"Type error during transcription setup: {e}")
return f"Error: Invalid input provided ({e})"
except RuntimeError as e:
logger.error(f"Runtime error during transcription: {e}")
logger.error(traceback.format_exc())
return f"Error during processing: {e}"
except Exception as e:
logger.error(f"Unexpected error during transcription: {str(e)}")
logger.error(traceback.format_exc())
return f"Error processing the file: An unexpected error occurred."
finally:
# Clean up all temporary files created during the process
for temp_file in temp_files_to_clean:
try:
if os.path.exists(temp_file):
os.remove(temp_file)
logger.info(f"Cleaned up temporary file: {temp_file}")
except Exception as e:
logger.warning(f"Could not remove temporary file {temp_file}: {str(e)}")
# Optionally reset models if idle (might be too aggressive here)
# model_manager.reset_models()
@lru_cache(maxsize=16)
def read_document(document_path):
"""Read the content of a document (PDF, DOCX, XLSX, CSV)."""
try:
logger.info(f"Reading document: {document_path}")
if not os.path.exists(document_path):
raise FileNotFoundError(f"Document not found: {document_path}")
file_extension = os.path.splitext(document_path)[1].lower()
if file_extension == ".pdf":
doc = fitz.open(document_path)
text = "\n".join([page.get_text() for page in doc])
doc.close()
return text
elif file_extension == ".docx":
doc = docx.Document(document_path)
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
elif file_extension in (".xlsx", ".xls"):
# Read all sheets and combine
xls = pd.ExcelFile(document_path)
text = ""
for sheet_name in xls.sheet_names:
df = pd.read_excel(xls, sheet_name=sheet_name)
text += f"--- Sheet: {sheet_name} ---\n{df.to_string()}\n\n"
return text.strip()
elif file_extension == ".csv":
# Try detecting separator
try:
df = pd.read_csv(document_path)
except pd.errors.ParserError:
logger.warning(f"Could not parse CSV {document_path} with default comma separator, trying semicolon.")
df = pd.read_csv(document_path, sep=';')
return df.to_string()
else:
logger.warning(f"Unsupported document type: {file_extension}")
return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document."
except FileNotFoundError as e:
logger.error(f"Error reading document: {e}")
return f"Error: Document file not found at {document_path}"
except Exception as e:
logger.error(f"Error reading document {document_path}: {str(e)}")
logger.error(traceback.format_exc())
return f"Error reading document: {str(e)}"
@lru_cache(maxsize=16)
def read_url(url):
"""Read the main textual content of a URL."""
if not url or not url.strip().startswith('http'):
logger.info(f"Invalid or empty URL provided: '{url}'")
return "" # Return empty for invalid or empty URLs
try:
logger.info(f"Reading URL: {url}")
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
# Increased timeout
response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
# Check content type - proceed only if likely HTML/text
content_type = response.headers.get('content-type', '').lower()
if not ('html' in content_type or 'text' in content_type):
logger.warning(f"URL {url} has non-text content type: {content_type}. Skipping.")
return f"Error: URL content type ({content_type}) is not text/html."
soup = BeautifulSoup(response.content, 'html.parser')
# Remove non-content elements like scripts, styles, nav, footers etc.
for element in soup(["script", "style", "meta", "noscript", "iframe", "header", "footer", "nav", "aside", "form", "button"]):
element.extract()
# Attempt to find main content area (common tags/attributes)
main_content = (
soup.find("main") or
soup.find("article") or
soup.find("div", class_=["content", "main", "post-content", "entry-content", "article-body"]) or
soup.find("div", id=["content", "main", "article"])
)
if main_content:
text = main_content.get_text(separator='\n', strip=True)
else:
# Fallback to body if no specific main content found
body = soup.find("body")
if body:
text = body.get_text(separator='\n', strip=True)
else: # Very basic fallback
text = soup.get_text(separator='\n', strip=True)
# Clean up whitespace: replace multiple newlines/spaces with single ones
text = '\n'.join([line.strip() for line in text.split('\n') if line.strip()])
text = ' '.join(text.split()) # Consolidate spaces within lines
if not text:
logger.warning(f"Could not extract meaningful text from URL: {url}")
return "Error: Could not extract text content from URL."
# Limit content size to avoid overwhelming the LLM
max_chars = 15000
if len(text) > max_chars:
logger.info(f"URL content truncated to {max_chars} characters.")
text = text[:max_chars] + "... [content truncated]"
return text
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching URL {url}: {str(e)}")
return f"Error reading URL: Could not fetch content ({e})"
except Exception as e:
logger.error(f"Error parsing URL {url}: {str(e)}")
logger.error(traceback.format_exc())
return f"Error reading URL: Could not parse content ({e})"
def process_social_media_url(url):
"""Process a social media URL, attempting to get text and transcribe video/audio."""
if not url or not url.strip().startswith('http'):
logger.info(f"Invalid or empty social media URL: '{url}'")
return None
logger.info(f"Processing social media URL: {url}")
text_content = None
video_transcription = None
error_occurred = False
# 1. Try extracting text content using read_url (might work for some platforms/posts)
try:
text_content = read_url(url)
if text_content and text_content.startswith("Error:"):
logger.warning(f"Failed to read text content from social URL {url}: {text_content}")
text_content = None # Reset if it was an error message
except Exception as e:
logger.error(f"Error reading text content from social URL {url}: {e}")
error_occurred = True
# 2. Try downloading and transcribing potential video/audio content
downloaded_audio_path = None
try:
downloaded_audio_path = download_social_media_video(url)
if downloaded_audio_path:
logger.info(f"Audio downloaded from {url}, proceeding to transcription.")
video_transcription = transcribe_audio_or_video(downloaded_audio_path)
if video_transcription and video_transcription.startswith("Error"):
logger.warning(f"Transcription failed for audio from {url}: {video_transcription}")
video_transcription = None # Reset if it was an error
else:
logger.info(f"No downloadable audio/video found or download failed for URL: {url}")
except Exception as e:
logger.error(f"Error processing video content from social URL {url}: {e}")
logger.error(traceback.format_exc())
error_occurred = True
finally:
# Clean up downloaded file if it exists
if downloaded_audio_path and os.path.exists(downloaded_audio_path):
try:
os.remove(downloaded_audio_path)
logger.info(f"Cleaned up downloaded audio: {downloaded_audio_path}")
except Exception as e:
logger.warning(f"Failed to cleanup downloaded audio {downloaded_audio_path}: {e}")
# Return results only if some content was found or no critical error occurred
if text_content or video_transcription or not error_occurred:
return {
"text": text_content or "", # Ensure string type
"video": video_transcription or "" # Ensure string type
}
else:
logger.error(f"Failed to process social media URL {url} completely.")
return None # Indicate failure
@spaces.GPU(duration=300) # Allow more time for generation
def generate_news(instructions, facts, size, tone, *args):
"""Generate a news article based on provided data using an LLM."""
request_start_time = time.time()
logger.info("Received request to generate news.")
try:
# Ensure size is integer
try:
size = int(size) if size else 250 # Default size if None/empty
except ValueError:
logger.warning(f"Invalid size value '{size}', defaulting to 250.")
size = 250
# Check if models are initialized, load if necessary
model_manager.check_llm_initialized() # LLM is essential
# Whisper might be needed later, check/load if audio sources exist
# --- Argument Parsing ---
# The order *must* match the order components are added to inputs_list in create_demo
# Fixed inputs: instructions, facts, size, tone (already passed directly)
# Dynamic inputs from *args:
# Expected order in *args based on create_demo:
# 5 Documents, 15 Audio-related, 5 URLs, 9 Social-related
num_docs = 5
num_audio_sources = 5
num_audio_inputs_per_source = 3
num_urls = 5
num_social_sources = 3
num_social_inputs_per_source = 3
total_expected_args = num_docs + (num_audio_sources * num_audio_inputs_per_source) + num_urls + (num_social_sources * num_social_inputs_per_source)
args_list = list(args)
# Pad args_list with None if fewer arguments were received than expected
args_list.extend([None] * (total_expected_args - len(args_list)))
# Slice arguments based on the expected order
doc_files = args_list[0:num_docs]
audio_inputs_flat = args_list[num_docs : num_docs + (num_audio_sources * num_audio_inputs_per_source)]
url_inputs = args_list[num_docs + (num_audio_sources * num_audio_inputs_per_source) : num_docs + (num_audio_sources * num_audio_inputs_per_source) + num_urls]
social_inputs_flat = args_list[num_docs + (num_audio_sources * num_audio_inputs_per_source) + num_urls : total_expected_args]
knowledge_base = {
"instructions": instructions or "No specific instructions provided.",
"facts": facts or "No specific facts provided.",
"document_content": [],
"audio_data": [],
"url_content": [],
"social_content": []
}
raw_transcriptions = "" # Initialize transcription log
# --- Process Inputs ---
logger.info("Processing document inputs...")
for i, doc_file in enumerate(doc_files):
if doc_file and hasattr(doc_file, 'name'):
try:
content = read_document(doc_file.name) # doc_file.name is the temp path
if content and not content.startswith("Error"):
# Truncate long documents for the knowledge base summary
doc_excerpt = (content[:1000] + "... [document truncated]") if len(content) > 1000 else content
knowledge_base["document_content"].append(f"[Document {i+1} Source: {os.path.basename(doc_file.name)}]\n{doc_excerpt}")
else:
logger.warning(f"Skipping document {i+1} due to read error or empty content: {content}")
except Exception as e:
logger.error(f"Failed to process document {i+1} ({doc_file.name}): {e}")
# No cleanup needed here, Gradio handles temp file uploads
logger.info("Processing URL inputs...")
for i, url in enumerate(url_inputs):
if url and isinstance(url, str) and url.strip().startswith('http'):
try:
content = read_url(url)
if content and not content.startswith("Error"):
# Content is already truncated in read_url if needed
knowledge_base["url_content"].append(f"[URL {i+1} Source: {url}]\n{content}")
else:
logger.warning(f"Skipping URL {i+1} ({url}) due to read error or empty content: {content}")
except Exception as e:
logger.error(f"Failed to process URL {i+1} ({url}): {e}")
logger.info("Processing audio/video inputs...")
has_audio_source = False
for i in range(num_audio_sources):
start_idx = i * num_audio_inputs_per_source
audio_file = audio_inputs_flat[start_idx]
name = audio_inputs_flat[start_idx + 1] or f"Source {i+1}"
position = audio_inputs_flat[start_idx + 2] or "N/A"
if audio_file and hasattr(audio_file, 'name'):
# Store info for transcription later
knowledge_base["audio_data"].append({
"file_path": audio_file.name, # Use the temp path
"name": name,
"position": position,
"original_filename": os.path.basename(audio_file.name) # Keep original for logs
})
has_audio_source = True
logger.info(f"Added audio source {i+1}: {name} ({position}) - File: {knowledge_base['audio_data'][-1]['original_filename']}")
logger.info("Processing social media inputs...")
has_social_source = False
for i in range(num_social_sources):
start_idx = i * num_social_inputs_per_source
social_url = social_inputs_flat[start_idx]
social_name = social_inputs_flat[start_idx + 1] or f"Social Source {i+1}"
social_context = social_inputs_flat[start_idx + 2] or "N/A"
if social_url and isinstance(social_url, str) and social_url.strip().startswith('http'):
try:
logger.info(f"Processing social media URL {i+1}: {social_url}")
social_data = process_social_media_url(social_url)
if social_data:
knowledge_base["social_content"].append({
"url": social_url,
"name": social_name,
"context": social_context,
"text": social_data.get("text", ""),
"video_transcription": social_data.get("video", "") # Store potential transcription
})
has_social_source = True
logger.info(f"Added social source {i+1}: {social_name} ({social_context}) from {social_url}")
else:
logger.warning(f"Could not retrieve any content for social URL {i+1}: {social_url}")
except Exception as e:
logger.error(f"Failed to process social URL {i+1} ({social_url}): {e}")
# --- Transcribe Audio/Video ---
# Only initialize Whisper if needed
transcriptions_for_prompt = ""
if has_audio_source or any(sc.get("video_transcription") == "[NEEDS_TRANSCRIPTION]" for sc in knowledge_base["social_content"]): # Check if transcription actually needed
logger.info("Audio sources detected, ensuring Whisper model is ready...")
try:
model_manager.check_whisper_initialized()
except Exception as whisper_init_err:
logger.error(f"FATAL: Whisper model initialization failed: {whisper_init_err}. Cannot transcribe.")
# Add error message to raw transcriptions and continue without transcriptions
raw_transcriptions += f"[ERROR] Whisper model failed to load. Audio sources could not be transcribed: {whisper_init_err}\n\n"
# Optionally return an error message immediately?
# return f"Error: Could not initialize transcription model. {whisper_init_err}", raw_transcriptions
if model_manager.whisper_model: # Proceed only if whisper loaded successfully
logger.info("Transcribing collected audio sources...")
for idx, data in enumerate(knowledge_base["audio_data"]):
try:
logger.info(f"Transcribing audio source {idx+1}: {data['original_filename']} ({data['name']}, {data['position']})")
transcription = transcribe_audio_or_video(data["file_path"])
if transcription and not transcription.startswith("Error"):
quote = f'"{transcription}" - {data["name"]}, {data["position"]}'
transcriptions_for_prompt += f"{quote}\n\n"
raw_transcriptions += f'[Audio/Video {idx + 1}: {data["original_filename"]} ({data["name"]}, {data["position"]})]\n"{transcription}"\n\n'
else:
logger.warning(f"Transcription failed or returned error for audio source {idx+1}: {transcription}")
raw_transcriptions += f'[Audio/Video {idx + 1}: {data["original_filename"]} ({data["name"]}, {data["position"]})]\n[Error during transcription: {transcription}]\n\n'
except Exception as e:
logger.error(f"Error during transcription for audio source {idx+1} ({data['original_filename']}): {e}")
logger.error(traceback.format_exc())
raw_transcriptions += f'[Audio/Video {idx + 1}: {data["original_filename"]} ({data["name"]}, {data["position"]})]\n[Error during transcription: {e}]\n\n'
# Gradio handles cleanup of the uploaded temp file audio_file.name
logger.info("Adding social media content to prompt data...")
for idx, data in enumerate(knowledge_base["social_content"]):
source_id = f'[Social Media {idx+1}: {data["url"]} ({data["name"]}, {data["context"]})]'
has_content = False
if data["text"] and not data["text"].startswith("Error"):
# Truncate long text for the prompt, but keep full in knowledge base maybe?
text_excerpt = (data["text"][:500] + "...[text truncated]") if len(data["text"]) > 500 else data["text"]
social_text_prompt = f'{source_id} - Text Content:\n"{text_excerpt}"\n\n'
transcriptions_for_prompt += social_text_prompt # Add text content as if it were a quote/source
raw_transcriptions += f"{source_id}\nText Content:\n{data['text']}\n\n" # Log full text
has_content = True
if data["video_transcription"] and not data["video_transcription"].startswith("Error"):
social_video_prompt = f'{source_id} - Video Transcription:\n"{data["video_transcription"]}"\n\n'
transcriptions_for_prompt += social_video_prompt
raw_transcriptions += f"{source_id}\nVideo Transcription:\n{data['video_transcription']}\n\n"
has_content = True
if not has_content:
raw_transcriptions += f"{source_id}\n[No usable text or video transcription found]\n\n"
# --- Prepare Final Prompt ---
# Combine document and URL summaries
document_summary = "\n\n".join(knowledge_base["document_content"]) if knowledge_base["document_content"] else "No document content provided."
url_summary = "\n\n".join(knowledge_base["url_content"]) if knowledge_base["url_content"] else "No URL content provided."
transcription_summary = transcriptions_for_prompt if transcriptions_for_prompt else "No usable transcriptions available."
# Construct the prompt for the LLM
prompt = f"""<s>[INST] You are a professional news writer. Your task is to synthesize information from various sources into a coherent news article.
Primary Instructions: {knowledge_base["instructions"]}
Key Facts to Include: {knowledge_base["facts"]}
Supporting Information:
Document Content Summary:
{document_summary}
Web Content Summary (from URLs):
{url_summary}
Transcribed Quotes/Content (Use these directly or indirectly):
{transcription_summary}
Article Requirements:
- Title: Create a concise and informative title for the article.
- Hook: Write a compelling 15-word (approx.) hook sentence that complements the title.
- Body: Write the main news article body, aiming for approximately {size} words.
- Tone: Adopt a {tone} tone throughout the article.
- 5 Ws: Ensure the first paragraph addresses the core questions (Who, What, When, Where, Why).
- Quotes: Incorporate relevant information from the 'Transcribed Quotes/Content' section. Aim to use quotes where appropriate, but synthesize information rather than just listing quotes. Use quotation marks (" ") for direct quotes attributed correctly (e.g., based on name/position provided).
- Style: Adhere to a professional journalistic style. Be objective and factual.
- Accuracy: Do NOT invent information. Stick strictly to the provided facts, instructions, and source materials. If information is contradictory or missing, state that or omit the detail.
- Structure: Organize the article logically with clear paragraphs.
Begin the article now. [/INST]
Article Draft:
"""
# Log the prompt length (useful for debugging context limits)
logger.info(f"Generated prompt length: {len(prompt.split())} words / {len(prompt)} characters.")
# Avoid logging the full prompt if it's too long or contains sensitive info
# logger.debug(f"Generated Prompt:\n{prompt}")
# --- Generate News Article ---
logger.info("Generating news article with LLM...")
generation_start_time = time.time()
# Estimate max_new_tokens based on requested size + buffer
# Add buffer for title, hook, and potential verbosity
estimated_tokens_per_word = 1.5
max_new_tokens = int(size * estimated_tokens_per_word + 150) # size words + buffer
# Ensure max_new_tokens doesn't exceed model limits (adjust based on model's max context)
model_max_length = 2048 # Typical for TinyLlama, but check specific model card
# Calculate available space for generation
# Note: This token count is approximate. Precise tokenization is needed for accuracy.
# prompt_tokens = len(model_manager.tokenizer.encode(prompt)) # More accurate but slower
prompt_tokens_estimate = len(prompt) // 3 # Rough estimate
max_new_tokens = min(max_new_tokens, model_max_length - prompt_tokens_estimate - 50) # Leave buffer
max_new_tokens = max(max_new_tokens, 100) # Ensure at least a minimum generation length
logger.info(f"Requesting max_new_tokens: {max_new_tokens}")
try:
# Generate using the pipeline
outputs = model_manager.text_pipeline(
prompt,
max_new_tokens=max_new_tokens, # Use max_new_tokens instead of max_length
do_sample=True,
temperature=0.7, # Standard temperature for creative but factual
top_p=0.95,
top_k=50, # Consider adding top_k
repetition_penalty=1.15, # Adjusted penalty
pad_token_id=model_manager.tokenizer.eos_token_id,
num_return_sequences=1
)
# Extract generated text
generated_text = outputs[0]['generated_text']
# Clean up the result by removing the prompt
# Find the end of the prompt marker [/INST] and take text after it
inst_marker = "[/INST]"
marker_pos = generated_text.find(inst_marker)
if marker_pos != -1:
news_article = generated_text[marker_pos + len(inst_marker):].strip()
# Further clean potentially leading "Article Draft:" if model included it
if news_article.startswith("Article Draft:"):
news_article = news_article[len("Article Draft:"):].strip()
else:
# Fallback: Try removing the input prompt string itself (less reliable)
if prompt in generated_text:
news_article = generated_text.replace(prompt, "", 1).strip()
else:
# If prompt not found exactly, assume the output is only the generation
# This might happen if the pipeline handles prompt removal internally sometimes
news_article = generated_text
logger.warning("Prompt marker '[/INST]' not found in LLM output. Returning full output.")
generation_time = time.time() - generation_start_time
logger.info(f"News generation completed in {generation_time:.2f} seconds. Output length: {len(news_article)} characters.")
except torch.cuda.OutOfMemoryError as oom_error:
logger.error(f"CUDA Out of Memory error during LLM generation: {oom_error}")
logger.error(traceback.format_exc())
model_manager.reset_models(force=True) # Attempt to recover
raise RuntimeError("Generation failed due to insufficient GPU memory. Please try reducing article size or complexity.") from oom_error
except Exception as gen_error:
logger.error(f"Error during text generation pipeline: {str(gen_error)}")
logger.error(traceback.format_exc())
raise RuntimeError(f"LLM generation failed: {gen_error}") from gen_error
total_time = time.time() - request_start_time
logger.info(f"Total request processing time: {total_time:.2f} seconds.")
# Return the generated article and the log of raw transcriptions
return news_article, raw_transcriptions.strip()
except Exception as e:
total_time = time.time() - request_start_time
logger.error(f"Error in generate_news function after {total_time:.2f} seconds: {str(e)}")
logger.error(traceback.format_exc())
# Attempt to reset models to recover state if possible
try:
model_manager.reset_models(force=True)
except Exception as reset_error:
logger.error(f"Failed to reset models after error: {str(reset_error)}")
# Return error messages to the UI
error_message = f"Error generating the news article: {str(e)}"
transcription_log = raw_transcriptions.strip() + f"\n\n[ERROR] News generation failed: {str(e)}"
return error_message, transcription_log
def create_demo():
"""Creates the Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π° NewsIA - AI News Generator")
gr.Markdown("Create professional news articles from multiple information sources.")
# Store all input components for easy access/reset
all_inputs = []
with gr.Row():
with gr.Column(scale=2):
instructions = gr.Textbox(
label="Instructions for the News Article",
placeholder="Enter specific instructions for generating your news article (e.g., focus on the economic impact)",
lines=2,
value=""
)
all_inputs.append(instructions)
facts = gr.Textbox(
label="Main Facts",
placeholder="Describe the most important facts the news should include (e.g., Event name, date, location, key people involved)",
lines=4,
value=""
)
all_inputs.append(facts)
with gr.Row():
size_slider = gr.Slider(
label="Approximate Length (words)",
minimum=100,
maximum=700, # Increased max size
value=250,
step=50
)
all_inputs.append(size_slider)
tone_dropdown = gr.Dropdown(
label="Tone of the News Article",
choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"],
value="neutral"
)
all_inputs.append(tone_dropdown)
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("π Documents"):
gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
doc_inputs = []
for i in range(1, 6):
doc_file = gr.File(
label=f"Document {i}",
file_types=["pdf", ".docx", ".xlsx", ".csv"], # Explicit extensions for clarity
file_count="single" # Ensure single file per component
)
doc_inputs.append(doc_file)
all_inputs.extend(doc_inputs)
with gr.TabItem("π Audio/Video"):
gr.Markdown("Upload audio or video files for transcription (MP3, WAV, MP4, MOV, etc.). Max 5 sources.")
audio_video_inputs = []
for i in range(1, 6):
with gr.Group():
gr.Markdown(f"**Source {i}**")
audio_file = gr.File(
label=f"Audio/Video File {i}",
file_types=["audio", "video"]
)
with gr.Row():
speaker_name = gr.Textbox(
label="Speaker Name",
placeholder="Name of the interviewee or speaker",
value=""
)
speaker_role = gr.Textbox(
label="Role/Position",
placeholder="Speaker's title or role",
value=""
)
audio_video_inputs.append(audio_file)
audio_video_inputs.append(speaker_name)
audio_video_inputs.append(speaker_role)
all_inputs.extend(audio_video_inputs)
with gr.TabItem("π URLs"):
gr.Markdown("Add URLs to relevant web pages or articles. Max 5.")
url_inputs = []
for i in range(1, 6):
url_textbox = gr.Textbox(
label=f"URL {i}",
placeholder="https://example.com/article",
value=""
)
url_inputs.append(url_textbox)
all_inputs.extend(url_inputs)
with gr.TabItem("π± Social Media"):
gr.Markdown("Add URLs to social media posts (e.g., Twitter, YouTube, TikTok). Max 3.")
social_inputs = []
for i in range(1, 4):
with gr.Group():
gr.Markdown(f"**Social Media Source {i}**")
social_url_textbox = gr.Textbox(
label=f"Post URL",
placeholder="https://twitter.com/user/status/...",
value=""
)
with gr.Row():
social_name_textbox = gr.Textbox(
label=f"Account Name/User",
placeholder="Name or handle (e.g., @username)",
value=""
)
social_context_textbox = gr.Textbox(
label=f"Context",
placeholder="Brief context (e.g., statement on event X)",
value=""
)
social_inputs.append(social_url_textbox)
social_inputs.append(social_name_textbox)
social_inputs.append(social_context_textbox)
all_inputs.extend(social_inputs)
with gr.Row():
generate_button = gr.Button("β¨ Generate News Article", variant="primary")
clear_button = gr.Button("π Clear All Inputs")
with gr.Tabs():
with gr.TabItem("π Generated News Article"):
news_output = gr.Textbox(
label="Draft News Article",
lines=20, # Increased lines
show_copy_button=True,
value=""
)
with gr.TabItem("ποΈ Source Transcriptions & Logs"):
transcriptions_output = gr.Textbox(
label="Transcriptions and Processing Log",
lines=15, # Increased lines
show_copy_button=True,
value=""
)
# --- Event Handlers ---
# Define outputs
outputs_list = [news_output, transcriptions_output]
# Generate button click
generate_button.click(
fn=generate_news,
inputs=all_inputs, # Pass the consolidated list
outputs=outputs_list
)
# Clear button click
def clear_all_inputs_and_outputs():
# Return a list of default values matching the number and type of inputs + outputs
reset_values = []
for input_comp in all_inputs:
# Default for Textbox, Dropdown is "", for Slider is its default, for File is None
if isinstance(input_comp, (gr.Textbox, gr.Dropdown)):
reset_values.append("")
elif isinstance(input_comp, gr.Slider):
# Find the original default value if needed, or just use a sensible default
reset_values.append(250) # Reset slider to default
elif isinstance(input_comp, gr.File):
reset_values.append(None)
else:
reset_values.append(None) # Default for unknown/other types
# Add default values for the output fields
reset_values.extend(["", ""]) # Two Textbox outputs
# Also reset the models in the background
model_manager.reset_models(force=True)
logger.info("UI cleared and models reset.")
return reset_values
clear_button.click(
fn=clear_all_inputs_and_outputs,
inputs=None, # No inputs needed for the clear function itself
outputs=all_inputs + outputs_list # The list of components to clear
)
# Add event handler to reset models when the Gradio app closes or reloads (if possible)
# demo.unload(model_manager.reset_models, inputs=None, outputs=None) # Might not work reliably in Spaces
return demo
if __name__ == "__main__":
logger.info("Starting NewsIA application...")
# Optional: Pre-initialize Whisper on startup if desired and resources allow
# This can make the first transcription faster but uses GPU resources immediately.
# Consider enabling only if transcriptions are very common.
# try:
# logger.info("Attempting to pre-initialize Whisper model...")
# model_manager.initialize_whisper()
# except Exception as e:
# logger.warning(f"Pre-initialization of Whisper model failed (will load on demand): {str(e)}")
# Create the Gradio Demo
news_demo = create_demo()
# Configure the queue - remove concurrency_count and max_size
# Use default queue settings, suitable for most Spaces environments
news_demo.queue()
# Launch the Gradio app
logger.info("Launching Gradio interface...")
news_demo.launch(
server_name="0.0.0.0", # Necessary for Docker/Spaces
server_port=7860,
# share=True # Share=True is often handled by Spaces automatically, can be removed
# debug=True # Enable for more detailed Gradio logs if needed
)
logger.info("NewsIA application finished.") |