from model import JobRecommendationModel import os import logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('job_recommendation_training.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) def main(): try: logger.info("Starting job recommendation model training") # Create model instance model = JobRecommendationModel() # Train model train_data_path = 'models/job_recommendation/train_data/training_data.json' history = model.train(train_data_path, epochs=10) # Create directory if it doesn't exist os.makedirs('models/job_recommendation/saved_model', exist_ok=True) # Save model model_path = 'models/job_recommendation/saved_model/model.keras' model.save_model(model_path) logger.info("Model training completed and saved successfully") except Exception as e: logger.error(f"Error during model training: {str(e)}", exc_info=True) raise if __name__ == "__main__": main()