ArchCoder commited on
Commit
405694e
Β·
verified Β·
1 Parent(s): 91abbca

Update docs/ai_plan.md

Browse files
Files changed (1) hide show
  1. docs/ai_plan.md +95 -0
docs/ai_plan.md CHANGED
@@ -921,6 +921,101 @@ Beyond the factors provided, the following additional factors can enhance job re
921
 
922
  ---
923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924
  # Conclusion
925
 
926
  Implementing these AI/ML functionalities will significantly enhance the efficiency and effectiveness of the Hostel Grievance Redressal System. By leveraging advanced technologies like reinforcement learning, transformer-based models, and anomaly detection algorithms, and by integrating them within a Flask API framework, the system will provide a more responsive, empathetic, and proactive approach to managing resident grievances. Proper data collection, preprocessing, model training, and continuous monitoring are crucial to the success of these implementations. Following the detailed steps outlined above will ensure a robust and scalable integration of AI/ML capabilities into the existing system.
 
921
 
922
  ---
923
 
924
+ # Directory Structure
925
+ ```
926
+
927
+ Hostel-Management-and-Greivance-Redressal-System/
928
+ β”œβ”€β”€ .env
929
+ β”œβ”€β”€ Dockerfile
930
+ β”œβ”€β”€ a.py
931
+ β”œβ”€β”€ app.py
932
+ β”œβ”€β”€ dir_structure.md
933
+ β”œβ”€β”€ docs.md
934
+ β”œβ”€β”€ readme.md
935
+ β”œβ”€β”€ requirements.txt
936
+ β”œβ”€β”€ routes.py
937
+ β”œβ”€β”€ space.yml
938
+ β”œβ”€β”€ test_endpoints.py
939
+ β”œβ”€β”€ config/
940
+ β”‚ β”œβ”€β”€ __init__.py
941
+ β”‚ β”œβ”€β”€ config.py
942
+ β”œβ”€β”€ docs/
943
+ β”‚ β”œβ”€β”€ README.md
944
+ β”‚ β”œβ”€β”€ a.md
945
+ β”‚ β”œβ”€β”€ ai_plan.md
946
+ β”‚ β”œβ”€β”€ basic.md
947
+ β”‚ β”œβ”€β”€ data_plan.md
948
+ β”‚ β”œβ”€β”€ docs.md
949
+ β”‚ β”œβ”€β”€ plan.txt
950
+ β”‚ β”œβ”€β”€ ppt.md
951
+ β”‚ β”œβ”€β”€ project_report.md
952
+ β”œβ”€β”€ models/
953
+ β”‚ β”œβ”€β”€ intelligent_routing/
954
+ β”‚ β”‚ β”œβ”€β”€ docs.md
955
+ β”‚ β”‚ β”œβ”€β”€ generate_data.py
956
+ β”‚ β”‚ β”œβ”€β”€ model.py
957
+ β”‚ β”‚ β”œβ”€β”€ test_model.py
958
+ β”‚ β”‚ β”œβ”€β”€ train.py
959
+ β”‚ β”‚ β”œβ”€β”€ saved_model/
960
+ β”‚ β”‚ β”‚ β”œβ”€β”€ model.keras
961
+ β”‚ β”‚ β”œβ”€β”€ test_data/
962
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
963
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_data.json
964
+ β”‚ β”‚ β”œβ”€β”€ test_results/
965
+ β”‚ β”‚ β”‚ β”œβ”€β”€ confusion_matrix.png
966
+ β”‚ β”‚ β”‚ β”œβ”€β”€ roc_curve.png
967
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_report.json
968
+ β”‚ β”‚ β”œβ”€β”€ train_data/
969
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
970
+ β”‚ β”‚ β”‚ β”œβ”€β”€ training_data.json
971
+ β”‚ β”œβ”€β”€ job_recommendation/
972
+ β”‚ β”‚ β”œβ”€β”€ docs.md
973
+ β”‚ β”‚ β”œβ”€β”€ generate_data.py
974
+ β”‚ β”‚ β”œβ”€β”€ model.py
975
+ β”‚ β”‚ β”œβ”€β”€ test.py
976
+ β”‚ β”‚ β”œβ”€β”€ train.py
977
+ β”‚ β”‚ β”œβ”€β”€ saved_model/
978
+ β”‚ β”‚ β”‚ β”œβ”€β”€ model.keras
979
+ β”‚ β”‚ β”œβ”€β”€ test_data/
980
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
981
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_data.json
982
+ β”‚ β”‚ β”œβ”€β”€ test_results/
983
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_report.json
984
+ β”‚ β”‚ β”œβ”€β”€ train_data/
985
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
986
+ β”‚ β”‚ β”‚ β”œβ”€β”€ training_data.json
987
+ β”‚ β”œβ”€β”€ multilingual_translation/
988
+ β”‚ β”‚ β”œβ”€β”€ model.py
989
+ β”‚ β”‚ β”œβ”€β”€ test_model.py
990
+ β”‚ β”‚ β”œβ”€β”€ test_data/
991
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
992
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_data.json
993
+ β”‚ β”‚ β”œβ”€β”€ test_results/
994
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_report.json
995
+ β”‚ β”‚ β”œβ”€β”€ train_data/
996
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
997
+ β”‚ β”‚ β”‚ β”œβ”€β”€ training_data.json
998
+ β”‚ β”œβ”€β”€ sentiment_analysis/
999
+ β”‚ β”‚ β”œβ”€β”€ model.py
1000
+ β”‚ β”‚ β”œβ”€β”€ test_model.py
1001
+ β”‚ β”‚ β”œβ”€β”€ test_data/
1002
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
1003
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_data.json
1004
+ β”‚ β”‚ β”œβ”€β”€ test_results/
1005
+ β”‚ β”‚ β”‚ β”œβ”€β”€ test_report.json
1006
+ β”‚ β”‚ β”œβ”€β”€ train_data/
1007
+ β”‚ β”‚ β”‚ β”œβ”€β”€ __init__.py
1008
+ β”‚ β”‚ β”‚ β”œβ”€β”€ training_data.json
1009
+ β”œβ”€β”€ test_results/
1010
+ β”‚ β”œβ”€β”€ endpoint_test_results.json
1011
+ β”œβ”€β”€ test_results1/
1012
+ β”‚ β”œβ”€β”€ endpoint_test_results.json
1013
+ β”œβ”€β”€ utils/
1014
+ β”‚ β”œβ”€β”€ __init__.py
1015
+ β”‚ β”œβ”€β”€ dir_str_creater.py
1016
+ β”‚ β”œβ”€β”€ logger.py
1017
+ ```
1018
+
1019
  # Conclusion
1020
 
1021
  Implementing these AI/ML functionalities will significantly enhance the efficiency and effectiveness of the Hostel Grievance Redressal System. By leveraging advanced technologies like reinforcement learning, transformer-based models, and anomaly detection algorithms, and by integrating them within a Flask API framework, the system will provide a more responsive, empathetic, and proactive approach to managing resident grievances. Proper data collection, preprocessing, model training, and continuous monitoring are crucial to the success of these implementations. Following the detailed steps outlined above will ensure a robust and scalable integration of AI/ML capabilities into the existing system.