#!/usr/bin/env python import os import subprocess from time import sleep import fairscale.nn.model_parallel.initialize as fs_init import torch import torch.distributed as dist from datetime import timedelta def _setup_dist_env_from_slurm(args): while not os.environ.get("MASTER_ADDR", ""): os.environ["MASTER_ADDR"] = ( subprocess.check_output( "sinfo -Nh -n %s | head -n 1 | awk '{print $1}'" % os.environ["SLURM_NODELIST"], shell=True, ) .decode() .strip() ) sleep(1) if not os.environ.get("MASTER_PORT"): os.environ["MASTER_PORT"] = str(args.master_port) if not os.environ.get("WORLD_SIZE"): os.environ["WORLD_SIZE"] = os.environ["SLURM_NPROCS"] if not os.environ.get("RANK"): os.environ["RANK"] = os.environ["SLURM_PROCID"] if not os.environ.get("LOCAL_RANK"): os.environ["LOCAL_RANK"] = os.environ["SLURM_LOCALID"] if not os.environ.get("LOCAL_WORLD_SIZE"): os.environ["LOCAL_WORLD_SIZE"] = os.environ["SLURM_NTASKS_PER_NODE"] _INTRA_NODE_PROCESS_GROUP, _INTER_NODE_PROCESS_GROUP = None, None _LOCAL_RANK, _LOCAL_WORLD_SIZE = -1, -1 def get_local_rank() -> int: return _LOCAL_RANK def get_local_world_size() -> int: return _LOCAL_WORLD_SIZE def distributed_init(args): if any([x not in os.environ for x in ["RANK", "WORLD_SIZE", "MASTER_PORT", "MASTER_ADDR"]]): _setup_dist_env_from_slurm(args) dist.init_process_group("nccl", timeout=timedelta(hours=5)) fs_init.initialize_model_parallel(args.model_parallel_size) torch.cuda.set_device(dist.get_rank() % torch.cuda.device_count()) global _LOCAL_RANK, _LOCAL_WORLD_SIZE _LOCAL_RANK = int(os.environ["LOCAL_RANK"]) _LOCAL_WORLD_SIZE = int(os.environ["LOCAL_WORLD_SIZE"]) global _INTRA_NODE_PROCESS_GROUP, _INTER_NODE_PROCESS_GROUP local_ranks, local_world_sizes = [ torch.empty([dist.get_world_size()], dtype=torch.long, device="cuda") for _ in (0, 1) ] dist.all_gather_into_tensor(local_ranks, torch.tensor(get_local_rank(), device="cuda")) dist.all_gather_into_tensor(local_world_sizes, torch.tensor(get_local_world_size(), device="cuda")) local_ranks, local_world_sizes = local_ranks.tolist(), local_world_sizes.tolist() node_ranks = [[0]] for i in range(1, dist.get_world_size()): if len(node_ranks[-1]) == local_world_sizes[i - 1]: node_ranks.append([]) else: assert local_world_sizes[i] == local_world_sizes[i - 1] node_ranks[-1].append(i) for ranks in node_ranks: group = dist.new_group(ranks) if dist.get_rank() in ranks: assert _INTRA_NODE_PROCESS_GROUP is None _INTRA_NODE_PROCESS_GROUP = group assert _INTRA_NODE_PROCESS_GROUP is not None if min(local_world_sizes) == max(local_world_sizes): for i in range(get_local_world_size()): group = dist.new_group(list(range(i, dist.get_world_size(), get_local_world_size()))) if i == get_local_rank(): assert _INTER_NODE_PROCESS_GROUP is None _INTER_NODE_PROCESS_GROUP = group assert _INTER_NODE_PROCESS_GROUP is not None def get_intra_node_process_group(): assert _INTRA_NODE_PROCESS_GROUP is not None, "Intra-node process group is not initialized." return _INTRA_NODE_PROCESS_GROUP def get_inter_node_process_group(): assert _INTRA_NODE_PROCESS_GROUP is not None, "Intra- and inter-node process groups are not initialized." return _INTER_NODE_PROCESS_GROUP