Spaces:
Running
on
Zero
Running
on
Zero
from typing import Dict | |
import fairscale.nn.model_parallel.initialize as fs_init | |
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, ParallelEmbedding, RowParallelLinear | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
def get_model_parallel_dim_dict(model: nn.Module) -> Dict[str, int]: | |
ret_dict = {} | |
for module_name, module in model.named_modules(): | |
def param_fqn(param_name): | |
return param_name if module_name == "" else module_name + "." + param_name | |
if isinstance(module, ColumnParallelLinear): | |
ret_dict[param_fqn("weight")] = 0 | |
if module.bias is not None: | |
ret_dict[param_fqn("bias")] = 0 | |
elif isinstance(module, RowParallelLinear): | |
ret_dict[param_fqn("weight")] = 1 | |
if module.bias is not None: | |
ret_dict[param_fqn("bias")] = -1 | |
elif isinstance(module, ParallelEmbedding): | |
ret_dict[param_fqn("weight")] = 1 | |
else: | |
for param_name, param in module.named_parameters(recurse=False): | |
ret_dict[param_fqn(param_name)] = -1 | |
return ret_dict | |
def calculate_l2_grad_norm( | |
model: nn.Module, | |
model_parallel_dim_dict: Dict[str, int], | |
) -> float: | |
mp_norm_sq = torch.tensor(0.0, dtype=torch.float32, device="cuda") | |
non_mp_norm_sq = torch.tensor(0.0, dtype=torch.float32, device="cuda") | |
for name, param in model.named_parameters(): | |
if param.grad is None: | |
continue | |
name = ".".join(x for x in name.split(".") if not x.startswith("_")) | |
assert name in model_parallel_dim_dict | |
if model_parallel_dim_dict[name] < 0: | |
non_mp_norm_sq += param.grad.norm(dtype=torch.float32) ** 2 | |
else: | |
mp_norm_sq += param.grad.norm(dtype=torch.float32) ** 2 | |
dist.all_reduce(mp_norm_sq) | |
dist.all_reduce(non_mp_norm_sq) | |
non_mp_norm_sq /= fs_init.get_model_parallel_world_size() | |
return (mp_norm_sq.item() + non_mp_norm_sq.item()) ** 0.5 | |
def scale_grad(model: nn.Module, factor: float) -> None: | |
for param in model.parameters(): | |
if param.grad is not None: | |
param.grad.mul_(factor) | |