AngelBottomless's picture
Upload 18 files
0a4fc35 verified
from abc import ABC, abstractmethod
import copy
import json
import logging
import os
from pathlib import Path
import random
from time import sleep
import traceback
import warnings
import pandas as pd
from tqdm import tqdm
import h5py
import torch.distributed as dist
from torch.utils.data import Dataset
import yaml
logger = logging.getLogger(__name__)
class DataBriefReportException(Exception):
def __init__(self, message=None):
self.message = message
def __str__(self):
return f"{self.__class__}: {self.message}"
class DataNoReportException(Exception):
def __init__(self, message=None):
self.message = message
def __str__(self):
return f"{self.__class__}: {self.message}"
class ItemProcessor(ABC):
@abstractmethod
def process_item(self, data_item, training_mode=False):
raise NotImplementedError
def is_huggingface_path(path: str) -> bool:
# Heuristic: Hugging Face dataset paths are in format "user/dataset"
# and not an existing local file or directory.
return ("/" in path and not os.path.exists(path) and not "booru" in path) or (os.path.exists(path) and os.path.isdir(path))
global_log_count = 0
def log_every_n(n, msg):
global global_log_count
if global_log_count % n == 0:
logger.warning(msg)
global_log_count += 1
class MyDataset(Dataset):
def __init__(self, config_path, item_processor: ItemProcessor, cache_on_disk=False):
logger.info(f"read dataset config from {config_path}")
with open(config_path, "r") as f:
self.config = yaml.load(f, Loader=yaml.FullLoader)
logger.info("DATASET CONFIG:")
logger.info(self.config)
self.cache_on_disk = cache_on_disk
if self.cache_on_disk:
cache_dir = self._get_cache_dir(config_path)
if int(os.environ["LOCAL_RANK"]) == 0:
local_rank = dist.get_rank()
print(f"Building cache on rank {local_rank}")
self._collect_annotations_and_save_to_cache(cache_dir)
dist.barrier()
ann, group_indice_range = self._load_annotations_from_cache(cache_dir)
else:
cache_dir = None
ann, group_indice_range = self._collect_annotations()
self.ann = ann
self.group_indices = {key: list(range(val[0], val[1])) for key, val in group_indice_range.items()}
logger.info(f"total length: {len(self)}")
self.item_processor = item_processor
def __len__(self):
return len(self.ann)
def _collect_annotations(self):
meta_type_to_caption_type = {
"image_text" : "prompt",
"image_nl_caption" : "sentence",
"image_alttext" : "alttext",
"default" : "prompt",
"super_high_quality_caption" : "super_high_quality_caption",
"image_tags" : "tags",
}
switchable_keys = ["prompt", "sentence", "alttext", "super_high_quality_caption", "tags"]
group_ann = {}
for meta in self.config["META"]:
meta_path, meta_type = meta["path"], meta.get("type", "default")
meta_key = meta_type_to_caption_type.get(meta_type, "prompt")
logger.info(f"Reading {meta_path} with type {meta_type} and key {meta_key}")
if is_huggingface_path(meta_path):
raise NotImplementedError("Hugging Face datasets are not supported in this minimal example.")
else:
meta_ext = os.path.splitext(meta_path)[-1]
if meta_ext == ".json":
# with open(meta_path) as f:
# meta_l = json.load(f)
with open(meta_path, 'r') as json_file:
f = json_file.read()
meta_l = json.loads(f)
elif meta_ext == ".jsonl":
meta_l = []
with open(meta_path) as f:
for i, line in tqdm(enumerate(f), desc=f"Reading {meta_path}"):
try:
read_result = json.loads(line)
if isinstance(read_result, dict):
for key in switchable_keys:
if key in read_result and meta_key != key:
read_result[meta_key] = read_result[key]
read_result.pop(key)
break
if read_result[meta_key].strip():
meta_l.append(read_result)
else:
logger.error(f"Empty prompt in {meta_path} line {i}, file: {meta_path}")
log_every_n(10000, f"line {i}: {read_result}")
else:
raise ValueError(f"Expected a dictionary, got {type(read_result)} for {meta_path} line {i}")
except json.decoder.JSONDecodeError as e:
logger.error(f"Error decoding the following jsonl line ({i}):\n{line.rstrip()}")
raise e
elif meta_ext == ".parquet":
meta_l = []
df = pd.read_parquet(meta_path) # Read the Parquet file into a DataFrame
pq_cols = meta.get("pq_cols", None)
if pq_cols is not None:
cols = pq_cols.split(",")
else:
cols = None
if cols:
if "index" not in cols:
raise ValueError(f"The 'index' column must be included in the 'pq_cols' list., in {meta_path}")
if not all([col in df.columns for col in cols]):
raise ValueError(f"Columns in 'pq_cols' must be present in the Parquet file., in {meta_path}")
for _, row in tqdm(df.iterrows(), total=len(df), desc=f"Reading {meta_path}"):
# Pull the 'index' column (whatever column indicates image index/id)
index_val = row["index"]
# For each *other* column in the row, if not None/NaN, use it as "prompt"
for col in df.columns:
if col == "index":
continue
if cols:
if col not in cols:
continue
# Skip if the value is None or NaN
if pd.notna(row[col]) and str(row[col]):
log_every_n(10000, f"{meta_key}: {row[col]}")
meta_l.append({
"image_path": f"danbooru://{index_val}" if not os.path.exists(index_val) and "://" not in str(index_val) else str(index_val),
meta_key: str(row[col]) # Cast to str in case it's not a string
})
else:
raise NotImplementedError(
f'Unknown meta file extension: "{meta_ext}". '
f"Currently, .json, .jsonl, .parquet (with index column + caption columns) are supported. "
"If you are using a supported format, please set the file extension so that the proper parsing "
"routine can be called."
)
logger.info(f"{meta_path}, type{meta_type}: len {len(meta_l)}")
if "ratio" in meta:
random.seed(0)
meta_l = random.sample(meta_l, int(len(meta_l) * meta["ratio"]))
logger.info(f"sample (ratio = {meta['ratio']}) {len(meta_l)} items")
if "root" in meta:
for item in meta_l:
for path_key in ["path", "image_url", "image", "image_path"]:
if path_key in item:
item[path_key] = os.path.join(meta["root"], item[path_key])
if meta_type not in group_ann:
group_ann[meta_type] = []
group_ann[meta_type] += meta_l
ann = sum(list(group_ann.values()), start=[])
group_indice_range = {}
start_pos = 0
for meta_type, meta_l in group_ann.items():
group_indice_range[meta_type] = [start_pos, start_pos + len(meta_l)]
start_pos = start_pos + len(meta_l)
return ann, group_indice_range
def _collect_annotations_and_save_to_cache(self, cache_dir):
if (Path(cache_dir) / "data.h5").exists() and (Path(cache_dir) / "ready").exists():
# off-the-shelf annotation cache exists
warnings.warn(
f"Use existing h5 data cache: {Path(cache_dir)}\n"
f"Note: if the actual data defined by the data config has changed since your last run, "
f"please delete the cache manually and re-run this experiment, or the data actually used "
f"will not be updated"
)
return
Path(cache_dir).mkdir(parents=True, exist_ok=True)
ann, group_indice_range = self._collect_annotations()
# when cache on disk, rank0 saves items to an h5 file
serialized_ann = [json.dumps(_) for _ in ann]
logger.info(f"start to build data cache to: {Path(cache_dir)}")
with h5py.File(Path(cache_dir) / "data.h5", "w") as file:
dt = h5py.vlen_dtype(str)
h5_ann = file.create_dataset("ann", (len(serialized_ann),), dtype=dt)
h5_ann[:] = serialized_ann
file.create_dataset("group_indice_range", data=json.dumps(group_indice_range))
with open(Path(cache_dir) / "ready", "w") as f:
f.write("ready")
logger.info(f"data cache built")
@staticmethod
def _get_cache_dir(config_path):
config_identifier = config_path
disallowed_chars = ["/", "\\", ".", "?", "!"]
for _ in disallowed_chars:
config_identifier = config_identifier.replace(_, "-")
cache_dir = f"./accessory_data_cache/{config_identifier}"
return cache_dir
@staticmethod
def _load_annotations_from_cache(cache_dir):
while not (Path(cache_dir) / "ready").exists():
# cache has not yet been completed by rank 0
assert int(os.environ["LOCAL_RANK"]) != 0
sleep(1)
cache_file = h5py.File(Path(cache_dir) / "data.h5", "r")
annotations = cache_file["ann"]
group_indice_range = json.loads(cache_file["group_indice_range"].asstr()[()])
return annotations, group_indice_range
def get_item_func(self, index):
data_item = self.ann[index]
if self.cache_on_disk:
data_item = json.loads(data_item)
else:
data_item = copy.deepcopy(data_item)
return self.item_processor.process_item(data_item, training_mode=True)
def __getitem__(self, index):
try:
return self.get_item_func(index)
except Exception as e:
if isinstance(e, DataNoReportException):
pass
elif isinstance(e, DataBriefReportException):
logger.info(e)
else:
logger.info(
f"Item {index} errored, annotation:\n"
f"{self.ann[index]}\n"
f"Error:\n"
f"{traceback.format_exc()}"
)
for group_name, indices_this_group in self.group_indices.items():
if indices_this_group[0] <= index <= indices_this_group[-1]:
if index == indices_this_group[0]:
new_index = indices_this_group[-1]
else:
new_index = index - 1
return self[new_index]
raise RuntimeError
def groups(self):
return list(self.group_indices.values())