Spaces:
Running
on
Zero
Running
on
Zero
from collections import defaultdict, deque | |
import datetime | |
import logging | |
import random | |
import time | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
logger = logging.getLogger(__name__) | |
def random_seed(seed=0): | |
random.seed(seed) | |
torch.random.manual_seed(seed) | |
np.random.seed(seed) | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=1000, fmt=None): | |
if fmt is None: | |
fmt = "{avg:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value | |
) | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t", window_size=1000, fmt=None): | |
self.meters = defaultdict(lambda: SmoothedValue(window_size, fmt)) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if v is None: | |
continue | |
elif isinstance(v, (torch.Tensor, float, int)): | |
self.meters[k].update(v.item() if isinstance(v, torch.Tensor) else v) | |
elif isinstance(v, list): | |
for i, sub_v in enumerate(v): | |
self.meters[f"{k}_{i}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v) | |
elif isinstance(v, dict): | |
for sub_key, sub_v in v.items(): | |
self.meters[f"{k}_{sub_key}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v) | |
else: | |
raise TypeError(f"Unsupported type {type(v)} for metric {k}") | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append("{}: {}".format(name, str(meter))) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None, start_iter=0, samples_per_iter=None): | |
i = start_iter | |
if not header: | |
header = "" | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt="{avg:.4f}") | |
data_time = SmoothedValue(fmt="{avg:.4f}") | |
log_msg = [header, "[{0" + "}/{1}]", "{meters}", "time: {time}", "data: {data}"] | |
if samples_per_iter is not None: | |
log_msg.append("samples/sec: {samples_per_sec:.2f}") | |
if torch.cuda.is_available(): | |
log_msg.append("max mem: {memory:.0f}") | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0: | |
try: | |
total_len = len(iterable) | |
except: | |
total_len = "unknown" | |
msg_kwargs = { | |
"meters": str(self), | |
"time": str(iter_time), | |
"data": str(data_time), | |
} | |
if samples_per_iter is not None: | |
msg_kwargs["samples_per_sec"] = samples_per_iter / iter_time.avg | |
if torch.cuda.is_available(): | |
msg_kwargs["memory"] = torch.cuda.max_memory_allocated() / MB | |
logger.info(log_msg.format(i, total_len, **msg_kwargs)) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logger.info("{} Total time: {}".format(header, total_time_str)) | |