AngelBottomless's picture
Upload 18 files
0a4fc35 verified
raw
history blame
5.09 kB
from collections import defaultdict, deque
import datetime
import logging
import random
import time
import numpy as np
import torch
import torch.distributed as dist
logger = logging.getLogger(__name__)
def random_seed(seed=0):
random.seed(seed)
torch.random.manual_seed(seed)
np.random.seed(seed)
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=1000, fmt=None):
if fmt is None:
fmt = "{avg:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger(object):
def __init__(self, delimiter="\t", window_size=1000, fmt=None):
self.meters = defaultdict(lambda: SmoothedValue(window_size, fmt))
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
elif isinstance(v, (torch.Tensor, float, int)):
self.meters[k].update(v.item() if isinstance(v, torch.Tensor) else v)
elif isinstance(v, list):
for i, sub_v in enumerate(v):
self.meters[f"{k}_{i}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v)
elif isinstance(v, dict):
for sub_key, sub_v in v.items():
self.meters[f"{k}_{sub_key}"].update(sub_v.item() if isinstance(sub_v, torch.Tensor) else sub_v)
else:
raise TypeError(f"Unsupported type {type(v)} for metric {k}")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None, start_iter=0, samples_per_iter=None):
i = start_iter
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
log_msg = [header, "[{0" + "}/{1}]", "{meters}", "time: {time}", "data: {data}"]
if samples_per_iter is not None:
log_msg.append("samples/sec: {samples_per_sec:.2f}")
if torch.cuda.is_available():
log_msg.append("max mem: {memory:.0f}")
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0:
try:
total_len = len(iterable)
except:
total_len = "unknown"
msg_kwargs = {
"meters": str(self),
"time": str(iter_time),
"data": str(data_time),
}
if samples_per_iter is not None:
msg_kwargs["samples_per_sec"] = samples_per_iter / iter_time.avg
if torch.cuda.is_available():
msg_kwargs["memory"] = torch.cuda.max_memory_allocated() / MB
logger.info(log_msg.format(i, total_len, **msg_kwargs))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info("{} Total time: {}".format(header, total_time_str))