Generation Each framework has a generate method for text generation implemented in their respective GenerationMixin class: PyTorch [~generation.GenerationMixin.generate] is implemented in [~generation.GenerationMixin]. TensorFlow [~generation.TFGenerationMixin.generate] is implemented in [~generation.TFGenerationMixin]. Flax/JAX [~generation.FlaxGenerationMixin.generate] is implemented in [~generation.FlaxGenerationMixin]. Regardless of your framework of choice, you can parameterize the generate method with a [~generation.GenerationConfig] class instance. Please refer to this class for the complete list of generation parameters, which control the behavior of the generation method. To learn how to inspect a model's generation configuration, what are the defaults, how to change the parameters ad hoc, and how to create and save a customized generation configuration, refer to the text generation strategies guide. The guide also explains how to use related features, like token streaming. GenerationConfig [[autodoc]] generation.GenerationConfig - from_pretrained - from_model_config - save_pretrained GenerationMixin [[autodoc]] generation.GenerationMixin - generate - compute_transition_scores - greedy_search - sample - beam_search - beam_sample - contrastive_search - group_beam_search - constrained_beam_search TFGenerationMixin [[autodoc]] generation.TFGenerationMixin - generate - compute_transition_scores FlaxGenerationMixin [[autodoc]] generation.FlaxGenerationMixin - generate