training_args = Seq2SeqTrainingArguments( output_dir="my_awesome_billsum_model", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, weight_decay=0.01, save_total_limit=3, num_train_epochs=4, predict_with_generate=True, fp16=True, push_to_hub=True, ) trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_billsum["train"], eval_dataset=tokenized_billsum["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() Once training is completed, share your model to the Hub with the [~transformers.Trainer.push_to_hub] method so everyone can use your model: trainer.push_to_hub() If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial here!