thon from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact") model = AutoModelForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact") prepare table + sentence data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} table = pd.DataFrame.from_dict(data) sentence = "George Clooney has 30 movies" encoding = tokenizer(table, sentence, return_tensors="pt") forward pass outputs = model(**encoding) print prediction predicted_class_idx = outputs.logits[0].argmax(dim=0).item() print(model.config.id2label[predicted_class_idx]) Refused TAPEX architecture is the same as BART, except for tokenization.