torch.float16) To load and run a model using Flash Attention 2, refer to the snippet below: thon import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") prompt = "My favourite condiment is" model_inputs = tokenizer([prompt], return_tensors="pt").to(device) model.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) tokenizer.batch_decode(generated_ids)[0] "The expected output" Expected speedups Below is a expected speedup diagram that compares pure inference time between the native implementation in transformers using mistralai/Mistral-7B-v0.1 checkpoint and the Flash Attention 2 version of the model.