Pipeline API The pipeline allows to use the model in a few lines of code: thon from transformers import pipeline from PIL import Image import requests load pipe pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") load image url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) inference depth = pipe(image)["depth"] Using the model yourself If you want to do the pre- and postprocessing yourself, here's how to do that: thon from transformers import AutoImageProcessor, AutoModelForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf") prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Depth Anything.