input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] logits = bartpho(input_ids).logits masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() probs = logits[0, masked_index].softmax(dim=0) values, predictions = probs.topk(5) print(tokenizer.decode(predictions).split()) This implementation is only for tokenization: "monolingual_vocab_file" consists of Vietnamese-specialized types extracted from the pre-trained SentencePiece model "vocab_file" that is available from the multilingual XLM-RoBERTa.