RAG / knowledge_base /model_doc_speech-encoder-decoder.txt
Ahmadzei's picture
update 1
57bdca5
Speech Encoder Decoder Models
The [SpeechEncoderDecoderModel] can be used to initialize a speech-to-text model
with any pretrained speech autoencoding model as the encoder (e.g. Wav2Vec2, Hubert) and any pretrained autoregressive model as the decoder.
The effectiveness of initializing speech-sequence-to-text-sequence models with pretrained checkpoints for speech
recognition and speech translation has e.g. been shown in Large-Scale Self- and Semi-Supervised Learning for Speech
Translation by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli,
Alexis Conneau.
An example of how to use a [SpeechEncoderDecoderModel] for inference can be seen in Speech2Text2.
Randomly initializing SpeechEncoderDecoderModel from model configurations.
[SpeechEncoderDecoderModel] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [Wav2Vec2Model] configuration for the encoder
and the default [BertForCausalLM] configuration for the decoder.
thon
from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel
config_encoder = Wav2Vec2Config()
config_decoder = BertConfig()
config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
model = SpeechEncoderDecoderModel(config=config)
Initialising SpeechEncoderDecoderModel from a pretrained encoder and a pretrained decoder.
[SpeechEncoderDecoderModel] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based speech model, e.g. Wav2Vec2, Hubert can serve as the encoder and both pretrained auto-encoding models, e.g. BERT, pretrained causal language models, e.g. GPT2, as well as the pretrained decoder part of sequence-to-sequence models, e.g. decoder of BART, can be used as the decoder.
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
Initializing [SpeechEncoderDecoderModel] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in the Warm-starting-encoder-decoder blog post.
To do so, the SpeechEncoderDecoderModel class provides a [SpeechEncoderDecoderModel.from_encoder_decoder_pretrained] method.
thon
from transformers import SpeechEncoderDecoderModel
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
"facebook/hubert-large-ll60k", "google-bert/bert-base-uncased"
)
Loading an existing SpeechEncoderDecoderModel checkpoint and perform inference.
To load fine-tuned checkpoints of the SpeechEncoderDecoderModel class, [SpeechEncoderDecoderModel] provides the from_pretrained() method just like any other model architecture in Transformers.
To perform inference, one uses the [generate] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
thon
from transformers import Wav2Vec2Processor, SpeechEncoderDecoderModel
from datasets import load_dataset
import torch
load a fine-tuned speech translation model and corresponding processor
model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
let's perform inference on a piece of English speech (which we'll translate to German)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values
autoregressively generate transcription (uses greedy decoding by default)
generated_ids = model.generate(input_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)
Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können.
Training
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (speech, text) pairs.
As you can see, only 2 inputs are required for the model in order to compute a loss: input_values (which are the
speech inputs) and labels (which are the input_ids of the encoded target sequence).
thon
from transformers import AutoTokenizer, AutoFeatureExtractor, SpeechEncoderDecoderModel
from datasets import load_dataset
encoder_id = "facebook/wav2vec2-base-960h" # acoustic model encoder
decoder_id = "google-bert/bert-base-uncased" # text decoder
feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id)
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id
load an audio input and pre-process (normalise mean/std to 0/1)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values
load its corresponding transcription and tokenize to generate labels
labels = tokenizer(ds[0]["text"], return_tensors="pt").input_ids
the forward function automatically creates the correct decoder_input_ids
loss = model(input_values=input_values, labels=labels).loss
loss.backward()
SpeechEncoderDecoderConfig
[[autodoc]] SpeechEncoderDecoderConfig
SpeechEncoderDecoderModel
[[autodoc]] SpeechEncoderDecoderModel
- forward
- from_encoder_decoder_pretrained
FlaxSpeechEncoderDecoderModel
[[autodoc]] FlaxSpeechEncoderDecoderModel
- call
- from_encoder_decoder_pretrained