|
For this task, load the SacreBLEU metric (see the 🤗 Evaluate quick tour to learn more about how to load and compute a metric): |
|
|
|
import evaluate |
|
metric = evaluate.load("sacrebleu") |
|
|
|
Then create a function that passes your predictions and labels to [~evaluate.EvaluationModule.compute] to calculate the SacreBLEU score: |
|
|
|
import numpy as np |
|
def postprocess_text(preds, labels): |
|
preds = [pred.strip() for pred in preds] |
|
labels = [[label.strip()] for label in labels] |
|
|
|
return preds, labels |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
if isinstance(preds, tuple): |
|
preds = preds[0] |
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) |
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels) |
|
result = {"bleu": result["score"]} |
|
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] |
|
result["gen_len"] = np.mean(prediction_lens) |
|
result = {k: round(v, 4) for k, v in result.items()} |
|
return result |
|
|
|
Your compute_metrics function is ready to go now, and you'll return to it when you setup your training. |