Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:
from transformers import create_optimizer
batch_size = 16
num_train_epochs = 3
num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs
optimizer, lr_schedule = create_optimizer(
init_lr=2e-5,
num_train_steps=num_train_steps,
weight_decay_rate=0.01,
num_warmup_steps=0,
)
Then you can load DistilBERT with [TFAutoModelForTokenClassification] along with the number of expected labels, and the label mappings:
from transformers import TFAutoModelForTokenClassification
model = TFAutoModelForTokenClassification.from_pretrained(
"distilbert/distilbert-base-uncased", num_labels=13, id2label=id2label, label2id=label2id
)
Convert your datasets to the tf.data.Dataset format with [~transformers.TFPreTrainedModel.prepare_tf_dataset]:
tf_train_set = model.prepare_tf_dataset(
tokenized_wnut["train"],
shuffle=True,
batch_size=16,
collate_fn=data_collator,
)
tf_validation_set = model.prepare_tf_dataset(
tokenized_wnut["validation"],
shuffle=False,
batch_size=16,
collate_fn=data_collator,
)
Configure the model for training with compile.