Convert your datasets to the tf.data.Dataset format using the [~datasets.Dataset.to_tf_dataset] and the [DefaultDataCollator]: | |
from transformers import DefaultDataCollator | |
data_collator = DefaultDataCollator(return_tensors="tf") | |
tf_train_dataset = train_ds.to_tf_dataset( | |
columns=["pixel_values", "label"], | |
shuffle=True, | |
batch_size=batch_size, | |
collate_fn=data_collator, | |
) | |
tf_eval_dataset = test_ds.to_tf_dataset( | |
columns=["pixel_values", "label"], | |
shuffle=True, | |
batch_size=batch_size, | |
collate_fn=data_collator, | |
) | |
To compute the accuracy from the predictions and push your model to the 🤗 Hub, use Keras callbacks. |