Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
training_args = TrainingArguments(
output_dir="segformer-b0-scene-parse-150",
learning_rate=6e-5,
num_train_epochs=50,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
save_total_limit=3,
evaluation_strategy="steps",
save_strategy="steps",
save_steps=20,
eval_steps=20,
logging_steps=1,
eval_accumulation_steps=5,
remove_unused_columns=False,
push_to_hub=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_ds,
eval_dataset=test_ds,
compute_metrics=compute_metrics,
)
trainer.train()
Once training is completed, share your model to the Hub with the [~transformers.Trainer.push_to_hub] method so everyone can use your model:
trainer.push_to_hub()
If you are unfamiliar with fine-tuning a model with Keras, check out the basic tutorial first!