|
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters: |
|
|
|
from transformers import create_optimizer |
|
batch_size = 16 |
|
num_epochs = 2 |
|
total_train_steps = (len(tokenized_squad["train"]) // batch_size) * num_epochs |
|
optimizer, schedule = create_optimizer( |
|
init_lr=2e-5, |
|
num_warmup_steps=0, |
|
num_train_steps=total_train_steps, |
|
) |
|
|
|
Then you can load DistilBERT with [TFAutoModelForQuestionAnswering]: |
|
|
|
from transformers import TFAutoModelForQuestionAnswering |
|
model = TFAutoModelForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased") |
|
|
|
Convert your datasets to the tf.data.Dataset format with [~transformers.TFPreTrainedModel.prepare_tf_dataset]: |
|
|
|
tf_train_set = model.prepare_tf_dataset( |
|
tokenized_squad["train"], |
|
shuffle=True, |
|
batch_size=16, |
|
collate_fn=data_collator, |
|
) |
|
tf_validation_set = model.prepare_tf_dataset( |
|
tokenized_squad["test"], |
|
shuffle=False, |
|
batch_size=16, |
|
collate_fn=data_collator, |
|
) |
|
|
|
Configure the model for training with compile: |
|
|
|
import tensorflow as tf |
|
model.compile(optimizer=optimizer) |
|
|
|
The last thing to setup before you start training is to provide a way to push your model to the Hub. |