|
Here is how you can create a function to truncate and map the start and end tokens of the answer to the context: |
|
|
|
def preprocess_function(examples): |
|
questions = [q.strip() for q in examples["question"]] |
|
inputs = tokenizer( |
|
questions, |
|
examples["context"], |
|
max_length=384, |
|
truncation="only_second", |
|
return_offsets_mapping=True, |
|
padding="max_length", |
|
) |
|
|
|
offset_mapping = inputs.pop("offset_mapping") |
|
answers = examples["answers"] |
|
start_positions = [] |
|
end_positions = [] |
|
for i, offset in enumerate(offset_mapping): |
|
answer = answers[i] |
|
start_char = answer["answer_start"][0] |
|
end_char = answer["answer_start"][0] + len(answer["text"][0]) |
|
sequence_ids = inputs.sequence_ids(i) |
|
# Find the start and end of the context |
|
idx = 0 |
|
while sequence_ids[idx] != 1: |
|
idx += 1 |
|
context_start = idx |
|
while sequence_ids[idx] == 1: |
|
idx += 1 |
|
context_end = idx - 1 |
|
# If the answer is not fully inside the context, label it (0, 0) |
|
if offset[context_start][0] > end_char or offset[context_end][1] < start_char: |
|
start_positions.append(0) |
|
end_positions.append(0) |
|
else: |
|
# Otherwise it's the start and end token positions |
|
idx = context_start |
|
while idx <= context_end and offset[idx][0] <= start_char: |
|
idx += 1 |
|
start_positions.append(idx - 1) |
|
idx = context_end |
|
while idx >= context_start and offset[idx][1] >= end_char: |
|
idx -= 1 |
|
end_positions.append(idx + 1) |
|
inputs["start_positions"] = start_positions |
|
inputs["end_positions"] = end_positions |
|
return inputs |
|
|
|
To apply the preprocessing function over the entire dataset, use 🤗 Datasets [~datasets.Dataset.map] function. |