|
Instantiate a pipeline |
|
for object detection with your model, and pass an image to it: |
|
|
|
from transformers import pipeline |
|
import requests |
|
url = "https://i.imgur.com/2lnWoly.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
obj_detector = pipeline("object-detection", model="devonho/detr-resnet-50_finetuned_cppe5") |
|
obj_detector(image) |
|
|
|
You can also manually replicate the results of the pipeline if you'd like: |
|
|
|
image_processor = AutoImageProcessor.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5") |
|
model = AutoModelForObjectDetection.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5") |
|
with torch.no_grad(): |
|
inputs = image_processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0] |
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
print( |
|
f"Detected {model.config.id2label[label.item()]} with confidence " |
|
f"{round(score.item(), 3)} at location {box}" |
|
) |
|
Detected Coverall with confidence 0.566 at location [1215.32, 147.38, 4401.81, 3227.08] |
|
Detected Mask with confidence 0.584 at location [2449.06, 823.19, 3256.43, 1413.9] |
|
|
|
Let's plot the result: |
|
|
|
draw = ImageDraw.Draw(image) |
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
x, y, x2, y2 = tuple(box) |
|
draw.rectangle((x, y, x2, y2), outline="red", width=1) |
|
draw.text((x, y), model.config.id2label[label.item()], fill="white") |
|
image |